摘要:
A ceramic matrix composite (CMC) structure 12 includes a plurality of layers (e.g., 16, 18, 20) of ceramic fibers. The CMC structure 12 further includes a plurality of spaced apart objects 22 on at least some of the plurality of layers along a thickness of the composite structure. The inclusion of the objects introduces an out-of-plane fiber displacement arranged to increase an interlaminar shear strength of the structure.
摘要:
A ceramic matrix composite (CMC) structure (50) with first (26) and second (28) CMC walls joined at an intersection (34) containing continuous fibers (53). A gusset (52) is formed in the intersection by an inward bending of some or all ceramic fibers (53) of the intersection, resulting in a diagonal brace between the first and second CMC walls. This creates a depression (54) or void (59) in the intersection. One or more ceramic reinforcement devices fill or span the depression to prevent distortion of the gusset. The reinforcement devices may include a ceramic filler (60) or core (61), a CMC rod or cord (56), and a CMC tape (62). The ceramic filler (60) may be continuous with a ceramic insulation layer (36) on an outer surface of the first CMC wall.
摘要:
A stack of substantially parallel ceramic plates (22) separated and interconnected by ceramic spacers (26, 27) forming a seal structure (20) with a length (L), a width (W), and a thickness (T). The spacers are narrower in width than the plates, and may be laterally offset from spacers in adjacent rows to form a space (28) in a row that aligns with a spacer in another adjacent row. An adjacent plate bends into the space when the seal structure is compressed in thickness. The spacers may have gaps (60, 62) forming a stepped or labyrinthine cooling flow path (66) within the seal structure. The spacers of each row may vary in lateral separation, thus providing a range of compressibility that varies along the width of the seal structure.
摘要:
Structural arrangements and methodology are provided for strengthening a bond between corresponding surfaces of a thermally insulating ceramic coating (14) and a ceramic matrix composite substrate (12). A subsurface inclusion of spheroid objects allows to influence a texture of an outer surface of the CMC substrate to enhance the bonding characteristics between the corresponding surfaces.
摘要:
A ceramic matrix composite (CMC) structure and methods of fabricating such structure are disclosed. In one example, the surface of a CMC substrate (12) is urged against a surface of a tool having blunt teeth. The blunt teeth can form surface indents that can serve as a first bond-enhancing arrangement between the surface of the substrate and a corresponding boundary of a thermally-insulating coating (14). In another example, sharp teeth can form surface indents and also penetrate through the surface of the substrate to cut some of the fibers beneath the surface of the substrate into split fiber segments, and a portion of the split fiber segments can protrude above the surface of the substrate. The protruding fiber segments can serve as a second bond-enhancing arrangement between the surface of the substrate and the corresponding boundary of the coating.
摘要:
A thermal barrier layer (20) is formed by exposing an oxide ceramic material to a thermal regiment to create a surface heat affected zone effective to protect an underlying structural layer (18) of the material. The heat affected surface layer exhibits a lower strength and higher thermal conductivity than the underlying load-carrying material; however, it retains a sufficiently low thermal conductivity to function as an effective thermal barrier coating. Importantly, because the degraded material retains the same composition and thermal expansion characteristics as the underlying material, the thermal barrier layer remains integrally connected in graded fashion with the underlying material without an interface boundary there between. This invention is particularly advantageous when embodied in an apparatus formed of an oxide-oxide ceramic matrix composite (CMC) material wherein reinforcing fibers (24) are anchored in the underlying load-carrying portion and extend into the non-structural thermal barrier portion to provide support and to function as surface crack arrestors. In one embodiment an airfoil (10) is formed of a stacked plurality of CMC plates having such a heat-affected thermal barrier layer formed thereon.
摘要:
A ceramic article having improved interlaminar strength and a method of forming the article. The article may be a ceramic matrix composite article. The methods of forming the articles increase the interlaminar strength of the article by forming indentations in the article during processing. The indentations may be tabs that are formed such that they provide one or more beneficial features for ceramic articles, such as CMC articles and hybrid structures. The tabs may be any of a variety of shapes, orientations, spacings, and combinations. In an alternative embodiment, the indentations are formed by pulling one or more fibers from one side of the ceramic layer to the other side. The articles have increased surface area, which helps to increase the bonding strength between the ceramic layer and any thermal barrier coating layer and/or ceramic core in the ceramic article.
摘要:
A ceramic ring segment for a turbine engine that may be used as a replacement for one or more metal components. The ceramic ring segment may be formed from a plurality of ceramic plates, such as ceramic matrix composite plates, that are joined together using a strengthening mechanism to reinforce the ceramic plates while permitting the resulting ceramic article to be used as a replacement for components for turbine systems that are typically metal, thereby taking advantage of the properties provided by ceramic materials. The strengthening mechanism may include a ceramic matrix composite overwrap or plurality of overwraps designed to help prevent delamination of the ceramic plates when the ceramic article is in use by placing the plates in compression.
摘要:
An article comprising a ceramic material having a ceramic matrix composite backing adapted for use in a gas turbine engine is provided. The article comprises a structural ceramic material having a hot side facing toward a high temperature environment and a cold side facing away from the high temperature environment; and a ceramic matrix composite composition having a strength greater than the strength of the ceramic material attached to the back of the cold side of the ceramic material, whereby crack initiation and propagation are inhibited by the ceramic matrix composition to a greater degree than by the ceramic material.
摘要:
A bushing (30, 31) in a hole (26) through a ceramic matrix composite structure (20) with a flange (34, 38) on each end of the bushing (30, 31) extending beyond and around the hole and pressing against opposed surfaces (22,24) of the CMC structure (20) with a preload that resists buckling of the composite structure fibers and resists internal CMC fiber separation. A connecting element (40), such as a bolt or pin, passes through the bushing (30, 31) for engagement with a supporting element (50). The bushing (31) may be formed in place as a single piece of ceramic, and cured along with the CMC structure (20), or it may be formed as two ceramic or metal parts (32, 36) that are joined together and preloaded by threads (33). The connecting element (40) may be a pin, or it may be a bolt with a shaft threaded into one part (32) of the bushing and a head (42) that pushes the second flange (38) toward the first flange (34).