摘要:
A method of calculating a dose distribution for a patient for use in a radiation therapy treatment plan. The method includes acquiring an image of a volume within the patient, defining a radiation source, and defining a reference plane oriented between the radiation source and the patient. The method also includes generating a radiation therapy treatment plan, wherein the plan includes a plurality of rays that extend between the radiation source and the patient volume, and calculating a three-dimensional dose volume for the patient volume from the plurality of rays that intersect the reference plane without first having to independently calculate a dose distribution on each of the plurality of rays. The method can also include displaying the three-dimensional dose volume.
摘要:
Compensation for patient rotation between planning and treatment in a radiation therapy machine is provided by angled translation of a table surface on which the patient is supported without actual patient rotation.
摘要:
The present invention provides methods of using current but incomplete data to prepare an approximated complete image of a patient potentially undergoing radiation therapy. A complete image of the patient is fused or aligned with a limited patient image using image registration techniques. The aligned image is converted to sinogram data. This sinogram data is compared to sinogram data corresponding to the limited patient image to determine what data exists beyond the scope of the limited sinogram. Any additional data is added to the limited data sinogram to obtain a complete sinogram. This complete sinogram is then reconstructed into an image that approximates the complete image that would have been taken at the time the limited image was obtained.
摘要:
Reduced dose megavoltage CT images are obtained using low flux data resulting from leakage through modulating shutters and/or collected by other means and augmented by incomplete high flux data collected during radiation therapy. The ability to construct tomographic projection sets from significantly varying flux rate data is provided by the use of air scans windowed to account for variations in mechanical leaf movement. These methods are also provide a means of imaging the patient entirely during radiation therapy treatments without any additional scan time.
摘要:
A system and method of identifying anatomical structures in a patient. The method includes the acts of acquiring an image of the patient, the image including a set of image elements; segmenting the image to categorize each image elements according to its substance; computing the probability that the categorization of each image element is correct; resegmenting the image starting with image elements that have a high probability and progressing to image elements with lower probabilities; aligning at least one of the image elements with an anatomical atlas; and fitting the anatomical atlas to the segmented image.
摘要:
A method of calculating a dose distribution for a patient for use in a radiation therapy treatment plan. The method includes acquiring an image of a volume within the patient, defining a radiation source, and defining a reference plane oriented between the radiation source and the patient. The method also includes generating a radiation therapy treatment plan, wherein the plan includes a plurality of rays that extend between the radiation source and the patient volume, and calculating a three-dimensional dose volume for the patient volume from the plurality of rays that intersect the reference plane without first having to independently calculate a dose distribution on each of the plurality of rays. The method can also include displaying the three-dimensional dose volume.
摘要:
A system and method for calibrating and positioning a radiation therapy treatment table with a high degree of precision and accuracy. The treatment table includes radiographic indexing markers embedded or inlaid therein. The radiographic indexing markers can include a density different from density of the table material, or a radio-frequency or magnetic contrasting matter, something that the imaging system and detector of the radiation therapy system can detect, so that when scanned, with or without a patient or phantom on the table, the precise location of the patient treatment table in the x, y and z planes is known. This is important so that the table may be reconstructed, alone or with a phantom on it, by the radiation therapy system software, providing a very good indication of where the table top is prior to treatment.
摘要:
A radiation treatment system and method of commissioning the system, the system including a gantry, a radiation source operable to produce a beam of radiation, and a measurement device. The measurement device is physically connected to the gantry, and includes a multi-dimensional scanning arm, and a detector. The method includes generating radiation from the radiation source, passing the radiation through an attenuation block, and receiving radiation with the measurement device. The measurement device is positioned such that it is not in contact with water. Data is generated from the radiation received and the system is commissioned using the generated data to match system characteristics to a previously defined standard.
摘要:
A system and method of identifying anatomical structures in a patient. The method includes the acts of acquiring an image of the patient, the image including a set of image elements; segmenting the image to categorize each image elements according to its substance; computing the probability that the categorization of each image element is correct; resegmenting the image starting with image elements that have a high probability and progressing to image elements with lower probabilities; aligning at least one of the image elements with an anatomical atlas; and fitting the anatomical atlas to the segmented image.
摘要:
A system and method of optimizing delivery of a radiation therapy treatment. The system optimizes treatment delivery in real-time to take into account a variety of factors, such as patient anatomical and physiological changes (e.g., respiration and other movement, etc.), and machine configuration changes (e.g., beam output factors, couch error, leaf error, etc.).