Abstract:
A retractable covering for an architectural opening includes a headrail in which a control system is mounted and a fabric suspended from the headrail. The fabric is mounted to be moved laterally between a rolled up retracted position and an extended position across the architectural opening. At least one roller about which the fabric can be wrapped is mounted at an end of the headrail for rotation about a vertical axis, and the system includes a flexible control element that is substantially horizontally disposed for moving the covering between extended and retracted positions.
Abstract:
Methods and apparatus to control architectural opening covering assemblies are disclosed herein. An architectural covering assembly including an architectural covering; a tube to which the architectural covering is coupled; a manual controller operatively coupled to the tube to rotate the tube; a motor including a motor housing and a motor shaft; and a clutch assembly including a clutch and a clutch housing in which the clutch is disposed, the motor shaft coupled to the clutch and the clutch coupled to the manual controller to hold the motor shaft substantially stationary when the architectural covering is moved under an influence of the motor to cause the motor housing to rotate with the clutch housing and the tube.
Abstract:
A retractable covering for an architectural opening includes a headrail in which a control system is mounted and a fabric suspended from the headrail. The fabric is mounted to be moved laterally between a rolled up retracted position and an extended position across the architectural opening. At least one roller about which the fabric can be wrapped is mounted at an end of the headrail for rotation about a vertical axis, and the system includes a flexible control element that is substantially horizontally disposed for moving the covering between extended and retracted positions.
Abstract:
Methods and apparatus to control an architectural opening covering assembly are disclosed herein. An example architectural opening covering assembly includes a tube and a covering coupled to the tube such that rotation of the tube winds or unwinds the covering around the tube. A motor is operatively coupled to the tube to rotate the tube. The example architectural opening covering assembly also includes a gravitational sensor to generate tube position information based on a gravity reference. The example architectural opening covering assembly further includes a controller communicatively coupled to the motor to control the motor. The controller is to determine a position of the covering based on the tube position information.
Abstract:
A light blocking or blackout composite material is described. The light blocking material includes at least two metalized layers. In one embodiment, a polymer film is coated on both sides with a first metalized layer and a second metalized layer. The metalized layers may have matching or different optical densities. Other layers can be combined with the metalized layers in order to provide a finished surface and/or to protect the metalized layers.
Abstract:
A covering an architectural opening including a support tube and a panel operably connected to the support tube and configured to be wound around the support tube. The panel includes a support sheet and at least one cell operably connected to the support sheet. The at least one cell includes a vane material operably connected to a first side of the support sheet and a cell support member operably connected to the vane material and configured to support the vane material at a distance away from the support sheet when the panel is in an extended position with respect to the support tube.
Abstract:
Methods and apparatus to control architectural opening covering assemblies are disclosed herein. An example architectural opening covering assembly includes a manual controller operatively coupled to a tube to rotate the tube. The tube includes an architectural opening covering. The example architectural opening covering assembly also includes a motor operatively coupled to the tube to rotate the tube. A local controller is communicatively coupled to the motor to control the motor. The example architectural opening covering assembly further includes a gravitational sensor to determine an angular position of the tube.
Abstract:
A covering an architectural opening including a support tube and a panel operably connected to the support tube and configured to be wound around the support tube. The panel includes a support sheet and at least one cell operably connected to the support sheet. The at least one cell includes a vane material operably connected to a first side of the support sheet and a cell support member operably connected to the vane material and configured to support the vane material at a distance away from the support sheet when the panel is in an extended position with respect to the support tube.