摘要:
A method of providing forward error correction for data services uses a parallel concatenated convolutional code which is a Turbo Code comprising a plurality of eight-state constituent encoders wherein a plurality of data block sizes are used in conjunction with said Turbo Code. A variation uses the method in a cellular radio system. Another variation uses the method in both forward and reverse likes of a cellular radio system.
摘要:
A parameterized interleaver design process is provided, which optimizes the design for interleavers of any size, and can be completely specified using only a few design parameters. According to the parameterized interleaver design process an interleaver π(i) of a length N is generated. A number of subpermutation masks are defined, and a first intermediate interleaver permutation is partitioned into a number of subgroups, wherein the number of subgroups corresponds with the number of subpermutation masks. Each of the subgroups of the first intermediate interleaver permutation is partitioned into a number of further subgroups, and each of the subpermutation masks is applied to each of the further subgroups of a corresponding subgroup of the first intermediate interleaver permutation, resulting in a corresponding portion of a second intermediate interleaver permutation. The resulting interleaver π(i) is generated based at least in part on the first and second intermediate interleaver permutations.
摘要:
Methods include configuring M parallel accumulation engines, accumulating a first information bit at a first set of specific parity bit addresses using the accumulation engines, increasing a parity bit address for each member of the first set of specific parity bit addresses by a pre-determined offset for each new information bit, accumulating subsequent information bits at parity bit addresses that are offset from the specific parity bit addresses by a pre-determined offset until an M+1 information bit is reached, accumulating the next M information bits at a second set of specific parity bit addresses using the accumulation engines, increasing a parity bit address for each member of the second set of specific parity bit addresses by the pre-determined offset for each new information bit; and repeating accumulating and increasing the addresses until the information bits are exhausted. Related systems are described.
摘要:
An approach for reliably communicating over a satellite in support of a communication service including, for example, as direct broadcast satellite and data service, is disclosed. An input message is encoded, yielding a structured Low Density Parity Check (LDPC) coded message. The coded message is modulated according to a high order modulation scheme that has a signal constellation representing more than two symbols per signaling point—e.g., 8-PSK (Phase Shift Keying) and 16-QAM (Quadrature Amplitude Modulation). The system includes a transmitter configured to propagate the modulated signal over the satellite. The above approach is particularly applicable to bandwidth constrained communication systems requiring high data rates.
摘要:
An approach is provided for encoding short frame length Low Density Parity Check (LDPC) codes. An encoder generates a LDPC code having an outer Bose Chaudhuri Hocquenghem (BCH) code. Structure is imposed on the LDPC codes by restricting portion part of the parity check matrix to be lower triangular and/or satisfying other requirements such that the communication between bit nodes and check nodes of the decoder is simplified. Further, a cyclic redundancy check (CRC) encoder is supplied to encode the input signal according to a CRC code. This approach has particular application in digital video broadcast services over satellite.
摘要:
An approach is provided for generating Low Density Parity Check (LDPC) codes. An LDPC encoder generates a short LDPC code by shortening longer mother codes. The short LDPC code has an outer Bose Chaudhuri Hocquenghem (BCH) code. According to another aspect, for an LDPC code with code rate of ⅗ utilizing 8-PSK (Phase Shift Keying) modulation, an interleaver provides for interleaving bits of the output LDPC code by serially writing data associated with the LDPC code column-wise into a table and reading the data row-wise from right to left. The above approach has particular application in digital video broadcast services over satellite.
摘要:
An approach is provided for encoding short frame length Low Density Parity Check (LDPC) codes. An encoder generates a LDPC code having an outer Bose Chaudhuri Hocquenghem (BCH) code. Structure is imposed on the LDPC codes by restricting portion part of the parity check matrix to be lower triangular and/or satisfying other requirements such that the communication between bit nodes and check nodes of the decoder is simplified. Further, a cyclic redundancy check (CRC) encoder is supplied to encode the input signal according to a CRC code. This approach has particular application in digital video broadcast services over satellite.
摘要:
An approach is provided for encoding short frame length Low Density Parity Check (LDPC) codes. An encoder generates a LDPC code having an outer Bose Chaudhuri Hocquenghem (BCH) code. Structure is imposed on the LDPC codes by restricting portion part of the parity check matrix to be lower triangular and/or satisfying other requirements such that the communication between bit nodes and check nodes of the decoder is simplified. Further, a cyclic redundancy check (CRC) encoder is supplied to encode the input signal according to a CRC code. This approach has particular application in digital video broadcast services over satellite.
摘要:
An approach is provided for bit labeling of a signal constellation. A transmitter generates encoded signals using, according to one embodiment, a structured parity check matrix of a Low Density Parity Check (LDPC) code. The transmitter includes an encoder for transforming an input message into a codeword represented by a plurality of set of bits. The transmitter includes logic for mapping non-sequentially (e.g., interleaving) one set of bits into a higher order constellation (Quadrature Phase Shift Keying (QPSK), 8-PSK, 16-APSK (Amplitude Phase Shift Keying), 32-APSK, etc.), wherein a symbol of the higher order constellation corresponding to the one set of bits is output based on the mapping.