摘要:
Methods and apparatus associated with storing data in high or low energy zones are described. Example apparatus include a data storage system (DSS) that protects a message using an erasure code (EC). A location in the DSS may have an energy efficiency rating or a latency. Example apparatus include circuits that produce EC encoded data that has a likelihood of use, that select a location to store the EC encoded data in the DSS based on the energy efficiency rating, the latency, or the likelihood of use, that store the EC encoded data in the location, and that compute an order of retrieval for EC encoded data stored in the location. The order of retrieval may be based on the energy efficiency rating or the latency. The EC encoded data may also have a priority based on the number of erasures for which the EC corrects.
摘要:
Optimal period rate matching for turbo coding. A means is provided herein by which a nearly optimal (e.g., optimal for one block size and sub-optimal for others) periodic puncturing pattern that depends on a mother code. Any desired rate matching can be achieved using the means and approaches presented herein to ensure an appropriate rate of an encoded block output from a turbo encoder so that the subsequently modulated signal generated there from has the appropriate rate. In addition, some embodiments can also employ shifting for another design level available in accordance with puncturing employed to provide for periodic rate matching. Selectivity can also be employed, such that, a first periodic puncturing pattern can be applied at a first time to ensure a first rate, and a second periodic puncturing pattern can be applied at a second time to ensure a second rate.
摘要:
Detecting, avoiding and/or correcting problematic puncturing patterns in parity bit streams used when implementing punctured Turbo codes is achieved without having to avoid desirable code rates. This enables identification/avoidance of regions of relatively poor Turbo code performance. Forward error correction comprising Turbo coding and puncturing achieves a smooth functional relationship between any measure of performance and the effective coding rate resulting from combining the lower rate code generated by the Turbo encoder with puncturing of the parity bits. In one embodiment, methods to correct/avoid degradations due to Turbo coding are implemented by puncturing interactions when two or more stages of rate matching are employed.
摘要:
A rate matching method is provided for a mobile communication system that performs an adjustment to a code rate based on an optimal level by puncturing or repetition to respective bit streams of transport channels. The rate matching method is preferably applicable to uplink and downlink rate matching for channel coding including turbo coding, convolutional coding and the like. The rate matching method for uplink can include executing coding for bits of a transport channel, and branching off the bits into a plurality of sequences, constructing a first interleaving pattern for the plurality of sequences, constructing a virtual interleaving pattern for at least one sequence based on a mapping rule with a corresponding first interleaving pattern and calculating different bit shifting values in each column of each virtual interleaving pattern. Then, a bit position to be punctured is determined in each constructed virtual interleaving pattern using the calculated bit shifting values.
摘要:
A rate matching method is provided for a mobile communication system that performs an adjustment to a code rate based on an optimal level by puncturing or repetition to respective bit streams of transport channels. The rate matching method is preferably applicable to uplink and downlink rate matching for channel coding including turbo coding, convolutional coding and the like. The rate matching method for uplink can include executing coding for bits of a transport channel, and branching off the bits into a plurality of sequences, constructing a first interleaving pattern for the plurality of sequences, constructing a virtual interleaving pattern for at least one sequence based on a mapping rule with a corresponding first interleaving pattern and calculating different bit shifting values in each column of each virtual interleaving pattern. Then, a bit position to be punctured is determined in each constructed virtual interleaving pattern using the calculated bit shifting values.
摘要:
A rate matching method is provided for a mobile communication system that performs an adjustment to a code rate based on an optimal level by puncturing or repetition to respective bit streams of transport channels. The rate matching method is preferably applicable to uplink and downlink rate matching for channel coding including turbo coding, convolutional coding and the like. The rate matching method for uplink can include executing coding for bits of a transport channel, and branching off the bits into a plurality of sequences, constructing a first interleaving pattern for the plurality of sequences, constructing a virtual interleaving pattern for at least one sequence based on a mapping rule with a corresponding first interleaving pattern and calculating different bit shifting values in each column of each virtual interleaving pattern. Then, a bit position to be punctured is determined in each constructed virtual interleaving pattern using the calculated bit shifting values.
摘要:
Optimal period rate matching for turbo coding. A means is provided herein by which a nearly optimal (e.g., optimal for one block size and sub-optimal for others) periodic puncturing pattern that depends on a mother code. Any desired rate matching can be achieved using the means and approaches presented herein to ensure an appropriate rate of an encoded block output from a turbo encoder so that the subsequently modulated signal generated there from has the appropriate rate. In addition, some embodiments can also employ shifting for another design level available in accordance with puncturing employed to provide for periodic rate matching. Selectivity can also be employed, such that, a first periodic puncturing pattern can be applied at a first time to ensure a first rate, and a second periodic puncturing pattern can be applied at a second time to ensure a second rate.
摘要:
Detecting, avoiding and/or correcting problematic puncturing patterns in parity bit streams used when implementing punctured Turbo codes is achieved without having to avoid desirable code rates. This enables identification/avoidance of regions of relatively poor Turbo code performance. Forward error correction comprising Turbo coding and puncturing achieves a smooth functional relationship between any measure of performance and the effective coding rate resulting from combining the lower rate code generated by the Turbo encoder with puncturing of the parity bits. In one embodiment, methods to correct/avoid degradations due to Turbo coding are implemented by puncturing interactions when two or more stages of rate matching are employed.
摘要:
A rate matching method is provided for a mobile communication system that performs an adjustment to a code rate based on an optimal level by puncturing or repetition to respective bit streams of transport channels. The rate matching method is preferably applicable to uplink and downlink rate matching for channel coding including turbo coding, convolutional coding and the like. The rate matching method for uplink can include executing coding for bits of a transport channel, and branching off the bits into a plurality of sequences, constructing a first interleaving pattern for the plurality of sequences, constructing a virtual interleaving pattern for at least one sequence based on a mapping rule with a corresponding first interleaving pattern and calculating different bit shifting values in each column of each virtual interleaving pattern. Then, a bit position to be punctured is determined in each constructed virtual interleaving pattern using the calculated bit shifting values.
摘要:
A method of providing forward error correction for data services uses a parallel concatenated convolutional code which is a Turbo Code comprising a plurality of eight-state constituent encoders wherein a plurality of data block sizes are used in conjunction with said Turbo Code. A variation uses the method in a cellular radio system. Another variation uses the method in both forward and reverse likes of a cellular radio system.