摘要:
A semiconductor device with improved transistor operating and flicker noise characteristics includes a substrate, an analog NMOS transistor and a compressively-strained-channel analog PMOS transistor disposed on the substrate. The device also includes a first etch stop liner (ESL) and a second ESL which respectively cover the NMOS transistor and the PMOS transistor. The relative measurement of flicker noise power of the NMOS and PMOS transistors to flicker noise power of reference unstrained-channel analog NMOS and PMOS transistors at a frequency of 500 Hz is less than 1.
摘要:
A Complementary Metal Oxide Semiconductor (CMOS) device is provided. The CMOS device includes an isolation layer provided in a semiconductor substrate to define first and second active regions. First and second gate patterns are disposed to cross over the first and second active regions, respectively. A first elevated source region and a first elevated drain region are disposed at both sides of the first gate pattern respectively, and a second elevated source region and a second elevated drain region are disposed at both sides of the second gate pattern respectively. The first elevated source/drain regions are provided on the first active region, and the second elevated source/drain regions are provided on the second active region. A first gate spacer is provided between the first gate pattern and the first elevated source/drain regions. A second gate spacer is provided to cover edges of the second elevated source/drain regions adjacent to the second gate pattern and an upper sidewall of the second gate pattern. Methods of fabricating the CMOS device is also provided.
摘要:
Methods of fabricating a semiconductor device using a selective epitaxial growth technique include forming a recess in a semiconductor substrate. The substrate having the recess is loaded into a reaction chamber. A semiconductor source gas and a main etching gas are injected into the reaction chamber to selectively grow an epitaxial semiconductor layer on a sidewall and on a bottom surface of the recess. A selective etching gas is injected into the reaction chamber to selectively etch a fence of the epitaxial semiconductor layer which is adjacent to the sidewall of the recess and grown to a level that is higher than an upper surface of the semiconductor substrate.
摘要:
A transistor includes a semiconductor substrate that has a first surface of a {100} crystal plane, a second surface of the {100} crystal plane having a height lower than that of the first surface, and a third surface of a {111} crystal plane connecting the first surface to the second surface. First heavily doped impurity regions are formed under the second surface. A gate structure is formed on the first surface. An epitaxial layer is formed on the second surface and the third surface. Second heavily doped impurity regions are formed at both sides of the gate structure. The second heavily doped impurity regions have side faces of the {111} crystal plane so that a short channel effect generated between the impurity regions may be prevented.
摘要:
Methods of fabricating a MOS transistor having a fully silicided metal gate electrode are provided. The method includes forming an isolation layer in a predetermined region of a semiconductor substrate to define an active region. An insulated gate pattern which crosses over the active region is formed. A spacer is formed on sidewalls of the gate pattern. A selective epitaxial growth process is applied to form semiconductor layers on the gate pattern and on the active region at both sides of the gate pattern. In this case, a poly-crystalline semiconductor layer is formed on the gate pattern while single-crystalline semiconductor layers are concurrently formed on the active region at both sides of the gate pattern. The semiconductor layers are selectively etched to form a gate-reduced pattern and elevated source and drain regions. Respective desired thicknesses of the gate-reduced pattern and the elevated source and drain regions may be obtained using an etch selectivity between the poly-crystalline semiconductor layer and the single-crystalline semiconductor layer. A silicidation process is applied to the semiconductor substrate where the gate-reduced pattern is formed to simultaneously form a fully silicided metal gate electrode and elevated source and drain silicide layers.
摘要:
It is an object of the present invention to provide a beam splitter providing a high-contrast image and preventing light from scattering, and a laser scanning microscope provided with the above, in which there is provided a high-quality probe coming in contact with an electrode pad of a semiconductor device, in which a foreign substance is not likely to attach, a configuration is not likely changed and a preferable electrical contact can be maintained for a long time. According to the present invention, a probe coming into contact with an electrode pad of a measurement object comprises a connection terminal part integrally formed and connected to a substrate, a contact part having a tapered configuration, and a supporting part which supports the contact part. The contact part extending from an end of the supporting part has a sectional configuration which shares at least one side face with the supporting part.
摘要:
According to an embodiment, a probe coming into contact with an electrode pad of a measurement object comprises a connection terminal part integrally formed and connected to a substrate, a contact part having a tapered configuration, and a supporting part which supports the contact part. The contact part extending from an end of the supporting part has a sectional configuration which shares at least one side face with the supporting part.
摘要:
Provided is an in-situ precleaning method for use in conjunction with epitaxial processes that utilizes temperatures at or below those typically utilized during the subsequent epitaxial deposition under pressure and ambient conditions suitable for inducing decomposition of semiconductor oxides, such as native oxides, from exposed semiconductor surfaces. The reduced temperature and the resulting quality of the cleaned semiconductor surfaces will tend to reduce the likelihood of temperature related issues such as unwanted diffusion, autodoping, slip, and other crystalline stress problems while simultaneously reducing the overall process time. The combination of pressure, ambient gas composition and temperature maintained within the reaction chamber are sufficient to decompose semiconductor oxides present on the substrate surface. For example, the reaction chamber may be operated so that the concentration of evolved oxygen within the reaction chamber is less than about 50%, or even less than 10%, of the equilibrium vapor pressure under the cleaning conditions.
摘要:
A semiconductor device includes a channel layer, a gate electrode formed on the channel layer, a p-type source region formed on a first side of the channel layer, and a p-type drain region formed on a second side of the channel layer. A heavy-hole band and a light-hole band are separated by compressive strain applied isotropically in an in-plane direction in the channel layer. A channel direction connecting the p-type source and drain regions is set substantially to a direction to maximize hole mobility in the channel layer.