Abstract:
An optical subassembly for monitoring the emission of a semi-conductor laser is disclosed. The subassembly is diced from a wafer having mounted thereon the devices to be tested as well as the testing optical devices. The devices of the wafer are burned-in and those sections of the wafer having lasers that pass the burn-in testing are diced and form the subassemblies of the present invention.
Abstract:
The disclosure describes an optical interconnect which utilizes a silicon waferboard (1) with grooves (3,4) etched to expose preferred crystallographic planes to effect alignment of focusing elements (5) between optical waveguides (6) and optoelectronic devices (2). The focusing elements (5) are made of silicon wafers and are etched to expose crystal planes which compliment crystal planes of cavities or grooves which are etched in the waferboard. The focusing elements may have holograms (7) formed thereon for efficient focusing to the optical waveguide (6).
Abstract:
An optical device includes a substrate. a non-planar transparent structure on a first surface of the substrate, the non-planar transparent structure being made of a first material, and a molded refractive surface on the first surface of the substrate adjacent the non-planar transparent structure, the molded refractive surface being made of a second material, different from the first material.
Abstract:
A passive optical element is transferred into a substrate already having features with a vertical dimension thereon. The features may be another passive optical element, an active optical element, a dichroic layer, a dielectric layer, alignment features, metal portions. A protective layer is provided over the feature during the transfer of the optical element. One or more of these processes may be performed on a wafer level.
Abstract:
A passive optical element is transferred into a substrate already having features with a vertical dimension thereon. The features may be another passive optical element, an active optical element, a dichroic layer, a dielectric layer, alignment features, metal portions. A protective layer is provided over the feature during the transfer of the optical element. One or more of these processes may be performed on a wafer level.
Abstract:
A structure having an optical element thereon has a portion of the structure extending beyond a region having the optical element in at least one direction. The structure may include an active optical element, with the different dimensions of the substrates forming the structure allowing access for the electrical interconnections for the active optical elements. Different dicing techniques may be used to realize the uneven structures.
Abstract:
A structure having an optical element thereon has a portion of the structure extending beyond a region having the optical element in at least one direction. The structure may include an active optical element, with the different dimensions of the substrates forming the structure allowing access for the electrical interconnections for the active optical elements. Different dicing techniques may be used to realize the uneven structures.
Abstract:
A technique for passive alignment of an opto-electronic device, such as laser, by alignment fiducials to a silicon wafer board utilizes a tilted notch in the opto-electronic device. This system overcomes limitations using standard etched notches for previous passive alignment systems. Specifically, the tilted notch presents a range of offset distances between the edge of the notch and the active light-emitting spot of the laser. Depending on the location at which the wafer is diced or cleaved, the distance from the notch on the laser to the laser stripe can be adjusted after the laser wafer is fabricated.
Abstract:
A planar hybrid optical amplifier is fabricated on a single crystal substrate. The components that are common to a variety of optical amplifier circuits are mounted on the substrate and the planar device that results is readily interchanged in various applications. In one embodiment the multiplexed signal consisting of light from a pump laser and an optical signal are introduced into a rare earth doped fiber which amplifies the input signal through stimulated emission of radiation.
Abstract:
A dielectric substrate of a material such as silicon is used to provide controlled impedance waveguides for coupling an optoelectronic device to an electronic device. The impedance is controlled by varying the thickness of the dielectric between the signal lines and the ground plane. In the preferred embodiment, the crystallographic structure of the silicon is employed to achieve great precision of the dielectric thickness.