摘要:
Structures and methods of fabricating of a floating gate non-volatile memory device. In a first example embodiment, We form a bottom tunnel layer comprised of a lower oxide tunnel layer and a upper hafnium oxide tunnel layer; a charge storage layer comprised of a tantalum oxide and a top blocking layer preferably comprised of a lower hafnium oxide storage layer and an upper oxide storage layer. We form a gate electrode over the top blocking layer. We pattern the layers to form a gate structure and form source/drain regions to complete the memory device. In a second example embodiment, we form a floating gate non-volatile memory device comprised of: a bottom tunnel layer comprised essentially of silicon oxide; a charge storage layer comprised of a tantalum oxide; a top blocking layer comprised essentially of silicon oxide; and a gate electrode. The embodiments also comprise anneals and nitridation steps.
摘要:
An example method embodiment forms spacers that create tensile stress on the substrate on both the PFET and NFET regions. We form PFET and NFET gates and form tensile spacers on the PFET and NFET gates. We implant first ions into the tensile PFET spacers to form neutralized stress PFET spacers. The neutralized stress PFET spacers relieve the tensile stress created by the tensile stress spacers on the substrate. This improves device performance.
摘要:
A structure and method of a semiconductor device with liner air gaps next to interconnects and dielectric layers. A dielectric layer is formed over a lower dielectric layer and a lower interconnect over a substrate. We form an interconnect opening in the dielectric layer. The opening has sidewalls of the dielectric layer. A sacrificial liner is formed over the sidewalls of the interconnect opening. An upper interconnect is formed that fills the opening. We remove the sacrificial liner/spacers to form (air) liner gaps.
摘要:
A process to form a FET using a replacement gate. An example feature is that the PMOS sacrificial gate is made narrower than the NMOS sacrificial gate. The PMOS gate is implanted preferably with Ge to increase the amount of poly sacrificial gate that is oxidized to form PMOS spacers. The spacers are used as masks for the LDD Implant. The space between the PLDD regions is preferably larger that the space between the NLDD regions because of the wider PMOS spacers. The PLDD tends to diffuse readily more than NLDD due to the dopant being small and light (i.e. Boron). The wider spacer between the PMOS regions improves device performance by improving the short channel effects for PMOS. In addition, the oxidization of the sacrificial gates allows trimming of sacrificial gates thus extending the limitation of lithography. Another feature of an embodiment is that a portion of the initial pad oxide is removed, thus reducing the amount of undercut created during the channel oxide strip for the dummy gate process. This would improve on the gate overlap capacitance for a T-gate transistor. In a second embodiment, two metal gates with different work functions are formed.
摘要:
A method of fabricating a CMOS device with reduced processing costs as a result of a reduction in photolithographic masking procedures, has been developed. The method features formation of L shaped silicon oxide spacers on the sides of gate structures, with a vertical spacer component located on the sides of the gate structure, and with horizontal spacer components located on the surface of the semiconductor substrate with a thick horizontal spacer component located adjacent to the gate structures, while a thinner horizontal spacer component is located adjacent to the thicker horizontal spacer component. After formation of a block out shape in a PMOS region of the CMOS device, a high angle implantation procedure is used to form a P type halo region in a top portion of the NMOS region, followed by another implantation procedure performed at lower implant angles, resulting in an N type LDD region in a portion of the NMOS region underlying the thicker horizontal spacer component, and resulting in an N type heavily doped source/drain region in a portion of the NMOS underlying the thinner horizontal spacer component. Another block out shape, and another series of similar implantation procedures is performed to create the halo, LDD and source/drain regions in the PMOS region. After formation of a photoresist block out shape on specific CMOS regions, a composite insulator spacer is formed on the sides of gate structures not covered by the photoresist shape, followed by formation of metal silicide on the gate structures and source/drain regions not covered by the photoresist block out shape.
摘要:
An optical proximity correction (OPC) model incorporates inline process variation data. OPC is performed by adjusting an input mask pattern with a mask bias derived from the OPC model to correct errors in the input mask pattern.
摘要:
Test structures including test trenches are used to define critical dimension of trenches in a via level of an integrated circuit to produce substantially the same depth. The trenches are formed at the periphery of the IC to serve as guard rings.
摘要:
A method (and semiconductor device) of fabricating a semiconductor device utilizes a thermal proximity correction (TPC) technique to reduce the impact of thermal variations during anneal. Prior to actual fabrication, a location of interest (e.g., a transistor) within an integrated circuit design is determined and an effective thermal area around the location is defined. Thermal properties of structures intended to be fabricated within this area are used to calculate an estimated temperature that would be achieved at the location of interest from a given anneal process. If the estimated temperature is below or above a predetermined target temperature (or range), TPC is performed. Various TPC techniques may be performed, such as the addition of dummy cells and/or changing dimensions of the structure to be fabricated at the location of interest (resulting in an modified thermally corrected design, to suppress local variations in device performance caused by thermal variations during anneal.
摘要:
A method of forming a device is disclosed. The method includes providing a substrate and processing a layer of the device on the substrate. The layer is inspected with an inspection tool for defects. The inspection tool is programmed with an inspection recipe determined from studying defects programmed into the layer at known locations.
摘要:
The present invention relates to integrated circuits. In particular, it relates to an IC comprising a receiving stage for receiving an input signal, an output stage for generating an output signal having a larger voltage range than the input signal and a level shifter. Embodiments of the invention provide a structure and a method for fabricating the IC wherein the level shifter is incorporated within the IC to improve reliability of the IC.