Abstract:
Examples are disclosed to track sport implements and/or objects of interest. An example apparatus includes a first coil to generate a first magnetic field having a first vertical component with a zero magnitude along a first line of interest and a second coil partially overlapped with the first coil, where the second coil is to generate a second magnetic field. The example apparatus also includes a sensor to measure a magnitude of the first magnetic field in the first line of interest and a processor to determine an object of interest has crossed the first line of interest based on the magnitude of the first magnetic field measured by the sensor.
Abstract:
Technologies for context-based management of wearable computing devices include a mobile computing device and a wearable computing device. The wearable computing device generates sensor data indicative of a location context of the wearable computing device and transmits the sensor data to the mobile computing device. The mobile computing device generates local sensor data indicative of a location context of the wearable computing device and fuses the local sensor data with the sensor data received from the wearable computing device. The mobile computing device determines a context of the wearable computing device based on the fused sensor data. The mobile computing device determines whether an adjustment to the functionality of the wearable computing device is required based on the determined context. The mobile computing device manages the functionality of the wearable computing device in response to determining that an adjustment to the functionality is required.
Abstract:
Various embodiments are generally directed to techniques to merge a virtual map derived from sensors of computing devices moved about an interior of a structure with a corresponding physical map. An apparatus to merge maps includes a processor component; and a merged map generator for execution by the processor component to merge a virtual map and a physical map to generate a merged map, the virtual map comprising indications of virtual pathways through an interior of a structure based on sensors, and the physical map comprising indications of physical pathways of the interior. Other embodiments are described and claimed.
Abstract:
Methods and apparatus for high speed location determinations are disclosed. An example apparatus includes at least two coils arranged along a zone of interest to generate a magnetic field, and a sensor to measure a change in the magnetic field associated with the at least two coils as an object of interest moves within or into the zone of interest. The example apparatus also includes a processor to determine a position of the object of interest based on the measured change.
Abstract:
Methods and apparatus for high speed location determinations are disclosed. An example apparatus includes at least two coils arranged along a zone of interest to generate a magnetic field, and a sensor to measure a change in the magnetic field associated with the at least two coils as an object of interest moves within or into the zone of interest. The example apparatus also includes a processor to determine a position of the object of interest based on the measured change.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of estimating an orientation of a mobile device. For example, an apparatus may include an orientation estimator to receive an indication of first and second consecutive steps of a user carrying a mobile device, to determine an angular rotation of an orientation parameter between the first and second steps, and to determine a value of the orientation parameter based on a comparison between the angular rotation and at least one predefined angular rotation threshold.
Abstract:
Examples are disclosed to track sport implements and/or objects of interest. An example apparatus includes a first coil to generate a first magnetic field having a first vertical component with a zero magnitude along a first line of interest and a second coil partially overlapped with the first coil, where the second coil is to generate a second magnetic field. The example apparatus also includes a sensor to measure a magnitude of the first magnetic field in the first line of interest and a processor to determine an object of interest has crossed the first line of interest based on the magnitude of the first magnetic field measured by the sensor.
Abstract:
Embodiments may comprise logic such as hardware and/or code to adaptively control the transmission power for a wireless channel. In many embodiments, adaptively controlling the transmission power may reduce or, in some embodiments, minimize interference between the wireless display (WiDi) transmissions and other transmissions such as multimedia content streaming over another wireless channel to the notebook via a second generation (2G) channel, third generation (3G) channel, or a future long term evolution (LTE) channel.
Abstract:
Certain embodiments herein are directed to reducing variations in received signal strength indicator (RSSI) measurements that may be received by a wireless device over a network, such as a WiFi network including one or more access points. A signal sent from an access point may be received by a user device, where channel estimation results associated with the received signal may be analyzed to determine a more accurate location of the user device. The received signal may be converted to at least one of the time domain and the frequency domain, in which signal components associated with the received signal may be identified based on a determination that the signal components may be associated with multipath fading or other types of interference. Such identified signal components, whether in the frequency domain or the time domain) may be excluded from a determination of a signal strength measurement that may in turn be used to identify the location of the user device.
Abstract:
A method of detecting a revisit position includes receiving at a computing system a plurality of position data points, each of the plurality of position data points including a signal scan measurement. The method farther includes calculating a first signal distance between a first signal scan measurement corresponding to a first position data point of the plurality of position data points and a second signal scan measurement corresponding to a second position data point of the plurality of position data points. The method further includes determining that the first signal distance is less than a first threshold, that the first signal distance is a local minimum for the first position data point, and the first signal distance is a local minimum for the second position data point. The method further includes, based on the determining, identifying the first and second position data points as revisit points.