Abstract:
The present disclosure relates to a diagnostic marker for breast cancer, having thioredoxin-1 as an active ingredient, and to a diagnostic kit for breast cancer using the same. The thioredoxin-1 is overexpressed in human breast cancer tissue so as to enable the early diagnosis of breast cancer or the early prediction prognosis of breast cancer, and therefore has a valuable use as a diagnostic marker for breast cancer. The present disclosure further relates to a method for the diagnosis of breast cancer comprising measuring serum thioredoxin 1 level. In addition, the method is useful in the early diagnosis of breast cancer thanks to its high diagnostic sensitivity and selectivity.
Abstract:
A base station includes a storage unit to store a codebook, wherein the codebook includes a plurality of matrices; a control unit to perform beamforming using the codebook to generate a signal; and a multi-antenna to transmit the signal. For all of the plurality of matrices, all column vectors of a same matrix of the plurality of matrices are orthogonal to each other. For all columns of the plurality of matrices, all column vectors of a same column of all of the plurality of matrices satisfy a Grassmannian line packing (GLP) criterion.
Abstract:
Disclosed are a composition for the diagnosis of ovarian cancer and/or pneumonia, comprising thioredoxin 1 as an active ingredient, and the use thereof. Also, a diagnostic kit for ovarian and/or pneumonia and a diagnosis method are provided. Because blood, which is relatively easy to be sampled, is employed as a specimen, the diagnostic method is very simple and does not impose a load on patients compared to conventional methods that are directed to a biopsy. In addition, the method is useful in the early diagnosis of ovarian cancer thanks to the high diagnostic sensitivity and selectivity thereof. Thioredoxin 1 can be used as a diagnostic marker for pneumonia, which is characterized by a decreased serum level, with high selectivity for pneumonia, thereby readily discriminating pneumonia from cancer as well as diseases other than cancer.
Abstract:
Phase detection between service nodes in a as “PRIME” (“PoweRline Intelligent Metering Evolution”) communications network, in which the service nodes are connected to one phase of a three-phase power distribution network. A service node joining a sub-network receives packet data units from other service nodes in the sub-network, including those that can potentially serve as a switch node to which the joining service node can register. The joining service node measures an elapsed time between a zero crossing of the AC power waveform at its phase and the start of a frame in the received packet data units. This elapsed time is compared with a similar zero crossing gap communicated by other service nodes in the packet data units, to identify the relative phases to which the two service nodes are connected.
Abstract:
Systems and methods for designing, using, and/or implementing media access control (MAC) protocols with subbanding are described. In some embodiments, a method may include receiving a beacon packet during one of a plurality of beacon slots of a superframe, each beacon slot corresponding to one of a plurality of different downlink subbands. The method may also include identifying, based on the received beacon packet, contention access periods following the beacon slots, each of the contention access periods corresponding to one of a plurality of different uplink subbands. The method may further include transmitting an information packet over each of the plurality of uplink subbands during the contention access periods. Then, the method may include receiving, during a guaranteed time slot following the contention access periods, an indication of a selected one of the plurality of uplink subbands to be used in a subsequent communications.
Abstract:
Systems and methods for channel selection in power line communications (PLC) are described. In some embodiments, a method may include defining a plurality of frames, each frame having a plurality of time slots. The method may also include assembling a pair of beacon and bandscan packets within each of time slot of each frame. The method may further include sequentially transmitting each of the frames over a corresponding one of a plurality of different frequency bands. In some implementations, each bandscan packet may include a slot index indicating a position of its time slot within its respective frame and/or a band index indicating one of the plurality of different frequency bands. In response to having transmitted the plurality of frames, the method may include receiving one or more packets indicating a selection of one or more of the plurality of different frequency bands to be used in subsequent communications.
Abstract:
An apparatus for generating a precoding matrix codebook includes a matrix group generator to generate a first group of unitary matrices based on a vector-based codebook for precoding of a multiple input multiple output (MIMO) communication scheme; a matrix group extender to extend the first group of unitary matrices to generate a second group of unitary matrices; and a matrix group selector to select a group of columns corresponding to a communication rank from each of the unitary matrices that are elements of the second group so that the columns are optimized based on a distance between the columns corresponding to the communication rank.