摘要:
The invention relates to formulations for the electrically assisted transdermal delivery of lidocaine and epinephrine. The present invention further provides methods and devices for the electrically assisted delivery of local anesthetics, preferably lidocaine.
摘要:
An electrotransport composition comprises at least one C.sub.2 -C.sub.4 lower alcohol, unsaturated derivatives thereof, or mixtures thereof, and at least one C.sub.8 -C.sub.4 higher alcohol, unsaturated derivatives thereof, or mixtures thereof. An electrotransport device and a method of increasing transdermal electrotransport flux utilize the composition of the invention for delivering pharmaceutically-acceptable agents across a body surface such as skin.
摘要:
A device (10) for the electrically assisted delivery of a therapeutic agent is described. The device (10) has rigid zones or regions (12, 14) which are physically connected by a flexible means (16) such as a web. The flexible means (16) permits the rigid zones (12, 14) to move independently with respect to each other while remaining physically connected or coupled. In a preferred embodiment, the rigid zones are physically and electronically coupled by the flexible means. In another embodiment, the device (500) comprises one or more rigid zones, the skin side of the rigid zone having a radius of curvature (520) which approximates that of the body site to which the device (500) is to be attached. A method of increasing the body surface conformability of an electrotransport device (50, 150, 170) is described. The method involves the step of intentionally placing rigid subcomponents (58, 36, 37) of the device in physically separate zones (52, 54; 152, 154, 156, 158; 172, 174, 176, 178) within the device. The rigid zones (52, 54; 152, 154, 156, 158; 172, 174, 176, 178) are separate and are coupled by flexible connector means (56, 62; 160, 162). In this manner, a conformable mosaic of rigid zones which comprises the device is created.
摘要:
An electrotransport apparatus using dispersed ion exchange material (19,93) is disclosed. The ion exchange material (19,93) may be dispersed in either the donor electrode assembly (10), the counter electrode assembly (10) or both electrode assemblies. The dispersed ion exchange material (93) comprises mobile ionic species (C2) and substantially immobile ionic species (P). The dispersed ion exchange material (93) is consumed during electrotransport of drug or agent (A) in an electrotransport process in which substantially no species which compete with the drug or agent for electrotransport are generated. Electrotransport devices exhibiting reduced polarization are also disclosed.
摘要:
A selectively permeable membrane (14) is positioned between the agent reservoir (15) and the electrode (11) of a donor electrode assembly (8) in an iontophoretic delivery device (10). Optionally, an electrolyte reservoir (13) is positioned intermediate the electrode (11) and the agent reservoir (15). In certain embodiments, the membrane (14) is permeable to species of less than a predetermined molecular weight and substantially less permeable to species of greater than the predetermined molecular weight. The agent is capable of dissociating into agent ions and counter ions. The size selectivity of the membrane (14), the molecular weight of the agent ions, the molecular weight of the counter ions, and optionally the molecular weight of the electrolyte ions are selected to (A) inhibit agent ions from interacting with the electrode (11), and from permeating into the electrolyte reservoir (13), where they might otherwise be degraded and (B) inhibit electrolyte ions, having a charge similar to that of the agent ions, from permeating into the agent reservoir (15) and competing with the agent ions for iontophoretic delivery into the patient.
摘要:
A composition comprises an agent to be delivered through a body surface and an electrotransport enhancer having a hydrophobic tail and a polar head of specific characteristics. An electrotransport delivery device is also provided having a reservoir comprising the agent to be delivered and the electrotransport enhancer of the invention. The electrotransport enhancers increase the electrotransport delivery rate of the agent through the surface while reducing the electrical resistance of the surface during electrotransport of the agent.
摘要:
A transdermal drug delivery device (20) is provided having both an active drug reservoir (24) and a passive drug reservoir (26). Drug is actively delivered by iontophoresis from the active drug reservoir (24) by an electric field generated by a power source (21). Simultaneously, drug is delivered from passive reservoir (26) by passive (i.e., non-electrically assisted) diffusion. In one embodiment, the passive drug reservoir (26) is electrically insulated from the active drug reservoir (24). In a second embodiment, both the active and the passive drug are contained in the same reservoir (34). In the second embodiment, the active drug is ionizable while the passive drug is non-ionizable. Most preferably, the active drug is an ionizable form (i.e., a salt form) of the passive drug.
摘要:
A dry-state iontophoretic drug delivery device (10, 20) is provided. The device has drug and electrolyte reservoirs (15, 16) which are initially in a non-hydrated condition. In one embodiment of the invention, a passageway (21, 22) is provided through the backing layer (13) and the electrode layer (11, 12) of both the donor electrode assembly (8) and the counter electrode assembly (9). Water or other liquid can be introduced through these passageways (21, 22) in order to hydrate the drug and electrolyte reservoirs (15, 16) and activate the device (10). In another embodiment of the device (20), the drug and electrolyte reservoirs (15, 16) are initially separated from their respective electrodes (11, 12). After the reservoirs (15, 16) are hydrated, they are placed in electrical contact with their respective electrodes (11, 12). By joining the reservoir (15, 16) to the electrode (11, 12) after hydration occurs, delamination problems are reduced.
摘要:
A membrane capable of inhibiting agent release from a delivery system when no electrical current is flowing and yet provide minimal impedance to electrically-assisted agent delivery, useful both for incorporating into electrotransport agent delivery systems and for use in measuring agent release rates in in vitro testing.