Abstract:
Provided are a display apparatus and an illumination apparatus including: a light source; a time division control unit that performs a time division operation on a value represented by a first luminance control signal of a first bit number for controlling luminance of the light source to generate second luminance control signals each having a second bit number that is smaller than the first bit number and generates third luminance control signals each having a pulse width that corresponds to one of the values represented by the second luminance control signals; and a drive unit that generates drive signals for causing the light source to emit light on the basis of the third luminance control signals and supplies the drive signals to the light source.
Abstract:
A display device includes a signal processing unit that receives input signals, and calculates output signals to a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel. The signal processing unit calculates a frequency of pixels belonging to each of a plurality of partitions using a light quantity of a surface light source. The signal processing unit calculates an index value for each of the partitions by at least multiplying the cumulative frequency being obtained by sequentially adding the frequency of pixels from a partition having the maximum light quantity among the partitions, and the number of partitions representing a position of a partition to which the cumulative frequency belongs counted from the partition having the maximum light quantity. The signal processing unit controls luminance of the surface light source based on a partition in which the index value exceeds a threshold.
Abstract:
A display device includes: an image display unit that includes a plurality of main pixels in an image display region, the image display unit including sub-pixels; a light source that irradiates the image display region; a light source control unit that controls luminance of the light source; and a color information correction processing unit that corrects first color information that is obtained based on the luminance of the light source and an input video signal to second color information, when color information of at least one of a red pixel, a green pixel, and a blue pixel included in the first color information exceeds a predetermined threshold, the second information is corrected by degenerating color information of the red pixel, the green pixel, and the blue pixel, and by adding color information of the white pixel included in the first color information based on the degenerated color information.
Abstract:
According to an aspect, a display device includes an image display panel on which pixels each including sub-pixels for displaying a first color, a second color, a third color, and a fourth color are arranged, and a signal processing unit that converts an input value of an input signal for an input HSV color space into an output signal for an extended HSV color space. The signal processing unit divides the extended HSV color space into a plurality of spaces, sets limit proportion values different from each other with respect to at least two spaces of the divided spaces respectively, calculates an extension coefficient α with respect to the input signal by using the input signal and a limit proportion value set with respect to a space according to the input signal, and calculates the output signal based on at least the input signal and the extension coefficient α.
Abstract:
A display panel including: a panel section including a display region where a plurality of pixels are arranged, and a gap region provided in a gap between the pixels; and a barrier section including a plurality of transmissive regions in a two-dimensional arrangement, and a light-blocking region to be around each of the transmissive regions. The transmissive regions are each configured to make entirely visible any one of the pixels therethrough when a viewer views the panel section not from a front but from a first or second direction via the barrier section, the pixels are each configured by a plurality of sub-pixels varying in type, and the sub-pixels in each of the pixels are arranged not in stripes but differently.
Abstract:
A display device includes: an image display unit that includes a plurality of main pixels in an image display region, the image display unit including sub-pixels; a light source that irradiates the image display region; a light source control unit that controls luminance of the light source; and a color information correction processing unit that corrects first color information that is obtained based on the luminance of the light source and an input video signal to second color information, when color information of at least one of a red pixel, a green pixel, and a blue pixel included in the first color information exceeds a predetermined threshold, the second information is corrected by degenerating color information of the red pixel, the green pixel, and the blue pixel, and by adding color information of the white pixel included in the first color information based on the degenerated color information.
Abstract:
According to an aspect, a display device includes a first sub-pixel, a second sub-pixel, a third sub-pixel; and a fourth sub-pixel. A signal obtained based on at least an input signal for the first sub-pixel and an extension coefficient is supplied to the first sub-pixel. A signal obtained based on at least an input signal for the second sub-pixel and the extension coefficient is supplied to the second sub-pixel. A signal obtained based on at least an input signal for the third sub-pixel and the extension coefficient is supplied to the third sub-pixel. A signal obtained based on at least the input signal for the first sub-pixel, the input signal for the second sub-pixel, the input signal for the third sub-pixel, and the extension coefficient is supplied to the fourth sub-pixel. The extension coefficient varies based on at least a saturation of the input signals.
Abstract:
A liquid crystal light control device in an embodiment according to the present invention includes a first liquid crystal cell, a second liquid crystal cell overlapping the first liquid crystal cell, a third liquid crystal cell overlapping the second liquid crystal cell, and a fourth liquid crystal cell overlapping the third liquid crystal, each of the first liquid crystal cell, the second liquid crystal cell, the third liquid crystal cell, and the fourth liquid crystal cell includes a first substrate arranged with a first electrode having a strip pattern, a second substrate arranged with a second electrode having a strip pattern, and a liquid crystal layer between the first substrate and the second substrate. The first substrate and the second substrate are arranged with a longitudinal direction of the strip pattern of the first electrode and second electrode intersecting.
Abstract:
According to one embodiment, each of a first liquid crystal to a fourth liquid crystal cell includes a first strip electrode, a second strip electrode, a third strip electrode, and a fourth strip electrode, the first strip electrode to the fourth strip electrode of the first liquid crystal cell and the first strip electrode to the fourth strip electrode of the third liquid crystal cell have a first shape, and the first strip electrode to the fourth strip electrode of the second liquid crystal cell and the first strip electrode to the fourth strip electrode of the fourth liquid crystal cell have a second shape that is different from the first shape.
Abstract:
According to one embodiment, a liquid crystal device includes a first liquid crystal cell and a second liquid crystal cell. The first liquid crystal cell and the second liquid crystal cell each include a first strip electrode, a second strip electrode, a third strip electrode and a fourth strip electrode. The extension direction of each of the first strip electrode and the second strip electrode in the first liquid crystal cell is different from the extension direction of each of the first strip electrode and the second strip electrode in the second liquid crystal cell. The extension direction of each of the first strip electrode and the second strip electrode is orthogonal to the extension direction of each of the third strip electrode and the fourth strip electrode.