Abstract:
According to one embodiment, a display device includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a base, a sensor and a sensor circuit. The sensor is interposed between the base and the liquid crystal layer in a display area including pixels. The sensor outputs a sensing signal corresponding to light incident from alongside the liquid crystal layer. The sensor circuit includes a plurality of switching elements. The pixels include first to third sub-pixels. At least some of elements of the switching elements are arranged in each of areas where the first to third sub-pixels are arranged. A signal line for the sensor, which outputs the sensing signal, is placed on a same layer as a feeding line connected to the sensor.
Abstract:
According to an aspect, a display device with a sensor includes: a substrate including a display region and a peripheral region on a periphery of the display region; detection electrodes arranged in a row-column configuration in the display region; and detection lines coupled to the respective detection electrodes. A shape of the substrate in a plan view includes a curve of a curved portion. The detection electrodes include a first electrode and a second electrode having a shape different from that of the first electrode in a plan view. The second electrode is juxtaposed with the curved portion. The detection lines each include a first line coupled to the first electrode and a second line coupled to the second electrode. The second line passes from the display region across the peripheral region and extends to a position overlapping with the second electrode in a plan view.
Abstract:
According to one embodiment, a display device includes a first common electrode, a second common electrode spaced apart from the first common electrode, a first signal line overlapping the first common electrode and the second common electrode, a first metal line overlapping the first signal line and the first common electrode, and a second metal line overlapping the first signal line and the second common electrode and spaced apart from the first metal line. The first metal line includes an extension portion extending between the first common electrode and the second common electrode.
Abstract:
The present invention realizes a bright image display by enhancing a numerical aperture of pixels. At least a portion of a pixel electrode is overlapped to a thin film transistor by way of a first insulation film, the pixel electrode is connected to an output electrode of the thin film transistor via a contact hole which is formed in the first insulation film, the counter electrode is arranged above the pixel electrode by way of a second insulation film in a state that the counter electrode is overlapped to the pixel electrode, the counter electrode is formed at a position avoiding the contact hole formed in the first insulation film as viewed in a plan view, and at least a portion of the counter electrode is overlapped to the thin film transistor.
Abstract:
The present invention realizes a bright image display by enhancing a numerical aperture of pixels. At least a portion of a pixel electrode is overlapped to a thin film transistor by way of a first insulation film, the pixel electrode is connected to an output electrode of the thin film transistor via a contact hole which is formed in the first insulation film, the counter electrode is arranged above the pixel electrode by way of a second insulation film in a state that the counter electrode is overlapped to the pixel electrode, the counter electrode is formed at a position avoiding the contact hole formed in the first insulation film as viewed in a plan view, and at least a portion of the counter electrode is overlapped to the thin film transistor.
Abstract:
A liquid crystal display device in which smear error is suppressed and transmittance is uniform is provided. In a liquid crystal display device which includes a plurality of pixels and uses comb-teeth-shaped transparent conductive films 110 as common wirings, the common wirings include mesh-shaped common metal wirings 101v and 101h extending in a vertical direction and a horizontal direction and the comb-teeth-shaped transparent conductive films 110 are connected between adjacent pixels.
Abstract:
A liquid crystal display device in which smear error is suppressed and transmittance is uniform is provided. In a liquid crystal display device which includes a plurality of pixels and uses comb-teeth-shaped transparent conductive films 110 as common wirings, the common wirings include mesh-shaped common metal wirings 101v and 101h extending in a vertical direction and a horizontal direction and the comb-teeth-shaped transparent conductive films 110 are connected between adjacent pixels.
Abstract:
A thin-film transistor includes a gate electrode made of metal, a light transmissive gate insulating film that covers the gate electrode, a semiconductor film that overlaps with the gate electrode through the gate insulating film, and a source electrode and a drain electrode, made of metal, and spaced from each other. The gate electrode and the semiconductor film have respective through-holes communicated with each other so that the gate insulating film enters an inside of the through-holes. The gate insulating film has an area of the inside of the through-holes of the gate electrode and the semiconductor film. The source electrode and the drain electrode pass through the inside of the through-holes of the gate electrode and the semiconductor film so as to overlap with a part of the area of the inside of the through-hole of the gate insulating film and avoid a remaining portion thereof.