摘要:
Systems and methods for minimizing startup transients in digital audio controllers that may result in audible artifacts in the output of an audio amplification system. One embodiment comprises a digital PWM amplifier that includes a mechanism for controlling the amount of dead time in the audio output signal. When the amplifier starts up, the PWM signals provided to the output stage are simultaneously deasserted (i.e., there is dead time) for most of each switch period. The amount of dead time is gradually reduced over a series of switch periods until a nominal operating amount of dead time in each switch period is reached. Thus, the PWM signals are slowly ramped up from having a very large percentage of dead time (e.g., nearly 100%) to having a very small percentage of dead time (e.g., 1-2% to prevent shoot-through.)
摘要:
Systems and methods for implementing over-current protection in amplifiers are provided, including systems, methods and devices for specifying a clip level at which to clip an audio signal in response to an over-current condition being detected. In an embodiment, the clip level is reduced while the over-current condition is being detected. Once the over-current condition is no longer detected, the clip level is maintained for a specified period before allowing the clip level to be increased. In an embodiment, the specified period, for which the clip level is maintained before the clip level is allowed to be increased, starts when the over-current condition is no longer detected, and ends when each of N immediately preceding sample(s) of the audio signal are not clipped to the clip level, where N is an integer, and N≧1. After an over-current condition is no longer detected, and after the clip level has been maintained for the specified period, the clip level can be increased if an over-current condition is not detected for a sample and the clip level is below a specified maximum clip level.
摘要:
Systems and methods for preventing violations of minimum pulse width requirements that may cause damage to PWM amplifiers. One embodiment comprises a digital PWM amplifier that includes shutdown circuitry which is configured to identify blockout intervals during which deassertion of the PWM signals would cause the generation of below-minimum-width pulses in the signals. Each blockout interval may, for example, begin 1 minimum pulse width before and end 1 minimum pulse width after a rising/falling edge the PWM signals. If a shutdown signal is asserted (or deasserted) during one of the blockout intervals, the PWM signals are deasserted (or reasserted) at the end of the blockout interval.
摘要:
Systems and methods for minimizing delay in a feedback path. In one embodiment, an analog-to-digital feedback path includes an analog-to-digital converter (ADC) configured to receive and digitize an analog signal such as an amplifier output to produce a serial digital output. A serial interface receives and parallelizes the serial digital output to produce a parallel data words that are provided to a processing unit such as a decimator. The processing unit processes the data words to produce a digital feedback signal which can then be used to modify an input signal, such as a digital audio input to the amplifier. A delay minimization subsystem is implemented in the feedback path to monitor a delay between generation of parallel data words by the serial interface and consumption of the parallel data words by the first processing unit. The delay minimization mechanism may be implemented in multiple channels of the feedback path.
摘要:
An electronic system includes controller to control a switching power converter to provide power to a load. To control the amount of power provided to the load, in at least one embodiment, the controller senses a current value representing a current in the switching power converter and detects when the current value reaches a target peak value. However, due to delays in the controller and/or the switching power converter, the detected target peak value will not be the actual current peak value generated by the switching power converter. In at least one embodiment, the controller adjusts the detected target peak value with a post-detection delay compensation factor to generate a delay compensated current value that more accurately represents an actual peak current value associated with the current in the switching power converter.
摘要:
In at least one embodiment, a controller allows triac-based dimmer to properly function and dim a load whose voltage is regulated by a switching power converter. In at least one embodiment, the switching power converter includes a switch to control voltage conversion of an input voltage to the switching power converter, wherein phase delays are introduced in the input voltage by a triac-based dimmer during a dimming period. In at least one embodiment, the controller is configured to control the switch of the switching power converter to establish an input resistance of the switching power converter during a dimming portion of the input voltage, wherein the input resistance allows the triac-based dimmer to phase modulate a supply voltage to the dimmer so that an output voltage of the dimmer has a substantially uninterrupted phase delay during each half-cycle of the supply voltage during the dimming period.
摘要:
Systems and methods for implementing over-current protection include reducing a clip level while an over-current condition is being detected. Once the over-current condition is no longer detected, the clip level is maintained for a specified period before allowing the clip level to be increased. In an embodiment, the specified period, for which the clip level is maintained before the clip level is allowed to be increased, starts when the over-current condition is no longer detected, and ends when each of N immediately preceding sample(s) of the audio signal are not clipped to the clip level, where N is an integer ≧1. After an over-current condition is no longer detected, and after the clip level has been maintained for the specified period, the clip level can be increased if an over-current condition is not detected for a sample and the clip level is below a specified maximum clip level.
摘要:
Power control systems generate electromagnetic interference (EMI). In at least one embodiment, a power control system includes a switching power converter and a controller that utilizes a spread spectrum strategy to reduce peak EMI values of the power control system. The controller generates a power regulation, switch control signal to control an input voltage to output voltage conversion by the switching power converter. The controller modulates the period of the control signal in accordance with the spread spectrum strategy. The spread spectrum strategy is an intentional plan to spread the spectrum of the control signal to reduce peak EMI values, and, thus, reduce the potential for degradation in performance, a malfunction, or failure of an electronic circuit caused by the EMI. The controller also modulates a pulse width of the switch control signal in response to modulation of the period of the control signal to provide power factor correction.
摘要:
Systems and methods for minimizing startup transients in digital audio controllers that may result in audible artifacts in the output of an audio amplification system. One embodiment comprises a digital PWM amplifier that includes a mechanism for controlling the amount of dead time in the audio output signal. When the amplifier starts up, the PWM signals provided to the output stage are simultaneously deasserted (i.e., there is dead time) for most of each switch period. The amount of dead time is gradually reduced over a series of switch periods until a nominal operating amount of dead time in each switch period is reached. Thus, the PWM signals are slowly ramped up from having a very large percentage of dead time (e.g., nearly 100%) to having a very small percentage of dead time (e.g., 1-2% to prevent shoot-through.)
摘要:
Systems and methods for minimizing delay in a feedback path. In one embodiment, an analog-to-digital feedback path includes an analog-to-digital converter (ADC) configured to receive and digitize an analog signal such as an amplifier output to produce a serial digital output. A serial interface receives and parallelizes the serial digital output to produce a parallel data words that are provided to a processing unit such as a decimator. The processing unit processes the data words to produce a digital feedback signal which can then be used to modify an input signal, such as a digital audio input to the amplifier. A delay minimization subsystem is implemented in the feedback path to monitor a delay between generation of parallel data words by the serial interface and consumption of the parallel data words by the first processing unit. The delay minimization mechanism may be implemented in multiple channels of the feedback path.