Abstract:
Techniques are described for detecting error events in codewords detected from data signals transmitted via a communication system. The error events are detected with an error detection code that corresponds to one or more dominant error events for the communication system. The invention develops a class of error detection codes to detect specific error events of known types. In some embodiments, the communication system comprises a recording system. The error detection coding method may be used in conjunction with error correction processing to provide substantial performance gain compared to conventional parity-based post processing methods. For example, the error correction processing may include one or more correlation filters that correspond to the one or more dominant error events for the communication system. A correction module may correct the codeword based on a type of the detected error event and a location of the detected error event in the codeword.
Abstract:
An information handling system, such as a magnetic disk drive, includes a data channel which has a method and apparatus for detecting binary symbols from a received signal occurring at high data rates. The data channel includes a detector that has two inputs. The detector has a first portion which determines a first estimate of a binary input. The second portion, operating in parallel with the first portion, determines two conditional estimates for a second binary input. The estimate for the second binary input is selected after the first estimate is determined. The first and second estimates for the first and second binary inputs are then output from the detector. Each of the first and second portions of the detector uses a three dimensional observation space with orthogonal coordinate axes. Each of three consecutive synchronous observation samples of the received signal corresponding unambiguously to an axis in the observation space. A decision feedback equalizer removes intersymbol interference terms associated with prior detector outputs. Each detector portion uses a plurality of linear classifiers to partition the observation space. The second and/or third sample of the equivalent channel response is constrained relative to the first for the purpose of simplifying the linear classifiers. Boolean logic functions to decide into which decision region of the observation space a sample maps into. Advantageously, the detector runs at a frequency that is half the frequency of the remaining portions of the read channel.
Abstract:
Apparatus and method for coding to improve the minimum distance properties of sequence detectors operating at high densities in storage systems is presented. The coding scheme of the present invention is referred to as maximum transition run (MTR) code and eliminates data patterns producing long runs of consecutive transitions while imposing the usual k constraint necessary for timing recovery. The code has a distance gaining property similar to an existing (1,k) runlength-limited (RLL) code, but can be implemented with considerably higher code rates. When the MTR code is used with fixed delay tree search (FDTS) or high order partial response maximum likelihood (PRML) detectors, the bit error rate performance improves significantly over existing combinations of codes and detectors.
Abstract:
In a method of detecting an error pattern in a codeword transmitted across a noisy communication channel, a codeword is detected. A syndrome is then generated by applying a generator polynomial to the codeword. The generator polynomial is adapted to produce a distinct syndrome set for each of “L” (L>1) different error patterns potentially introduced in the codeword during transmission across the communication channel. A type of an error pattern within the codeword is detected based on the syndrome or a shifted version of the syndrome, and then a start position of the error pattern within the codeword.
Abstract:
An estimated current phase error is used to control the oscillation frequency of a voltage controlled oscillator used to control the timing of sampling operations performed by an analog to digital converter (ADC). The current phase error is calculated by a recursive computation using a previous phase error in order to eliminate noise effects from the current phase error.
Abstract:
A method of constructing an effective generator polynomial for error correction by which a unique set of syndromes for each error event is produced is provided. The method includes preparing a set of dominant error events from the intersymbol interference characteristics of media; and generating a codeword from the data using a non-primitive generator polynomial that produces a unique syndrome set which can completely specify each dominant error event.
Abstract:
A method and an apparatus for encoding and decoding a modulation code are provided. The method includes: adding an error detection bit(s) to source information; performing k-constraint coding by inserting an error pattern that can be detected using an error detection code into a data stream that violates a k-constraint for a run length limited (RLL) code in a data stream comprising the error detection bit(s) and the source information, and recording the data stream after being k-constraint coded onto a recording medium; and reading the data stream recorded onto the recording medium and determining whether an error is present in the data stream.
Abstract:
Demodulation techniques for a wireless communication system make use of a decision feedback equalization (DFE) technique to mitigate the effects of multipath channel characteristics on receiver performance. The techniques may be particularly useful in the demodulation of complementary code keying (CCK) symbols. A demodulator that performs such techniques may include a time-variant or time-invariant matched filter, a feedback intersymbol interference (ISI) canceller, a transform unit, a phase rotation estimator and corrector, a pattern-dependent bias canceller, and a maximum picker for symbol decisions. The transform unit may include a bank of correlators, or alternatively a fast Walsh transform unit.
Abstract:
Techniques are described for detecting error events in codewords detected from data signals transmitted via a communication system. The error events are detected with an error detection code that corresponds to one or more dominant error events for the communication system. The invention develops a class of error detection codes to detect specific error events of known types. In some embodiments, the communication system comprises a recording system. The error detection coding method may be used in conjunction with error correction processing to provide substantial performance gain compared to conventional parity-based post processing methods. For example, the error correction processing may include one or more correlation filters that correspond to the one or more dominant error events for the communication system. A correction module may correct the codeword based on a type of the detected error event and a location of the detected error event in the codeword.
Abstract:
In an error correction method, a codeword is transmitted through a noisy communication channel and detected by a receiving device. An error detection code is then applied to the detected codeword to generate a syndrome. Where the syndrome is not all zero, the codeword is determined to contain some error. Accordingly, the method computes a set of potential error start positions for a plurality of error events based on a syndrome value corresponding to the syndrome. Next, a confidence value is computed for each of the plurality of error events at each of the potential error start positions in the refined set, and finally, a most likely error event in the detected codeword is corrected based on an error event and corresponding potential error start position having the highest confidence value.