Abstract:
An image processing device comprising: a conversion unit to receive a first input signal including first color information, a first color being reproduced at pixels on the basis of the first color information, the first input signal including first color information obtained from an input image signal corresponding to a red component, a green component and a blue component, to specify saturation of the first color, and configured to obtain luminance attenuation ratio on the basis of a relationship previously stored between saturation and luminance attenuation ratio, and the saturation of the first color, and to output a second input signal including second color information whose luminance is decreased from the first color information on the basis of the luminance attenuation ratio corresponding to the first color information; and a signal processing unit configured to output an output signal for driving the pixels on the basis of the second input signal.
Abstract:
A display device includes an image display unit and a conversion processing unit that receives a first input signal including first color information which is obtained based on an input video signal and which is for displaying at a predetermined pixel, and outputs a second input signal including second color information in which a hue of the first color information is varied by an amount of hue variation within a range defined such that hue variation falls within a predetermined range.
Abstract:
According to an aspect, a force sensor includes: a first electrode; a second electrode; a first conductor facing the first electrode in a first direction; a second conductor facing the second electrode in the first direction; a first elastic member and a second elastic member arranged between the first electrode and the first conductor; and the first elastic member arranged between the second electrode and the second conductor. The first elastic member and the second elastic member have degrees of compression with respect to force thereon that are different depending on temperature.
Abstract:
A touch panel, a display panel, and a display unit achieving prevention of erroneous detection caused by external noise. The touch panel includes: a plurality of detection scan electrodes extending in a first direction and a plurality of detection electrodes facing the plurality of detection scan electrodes and extending in a second direction which intersects the first direction. The one or more selected detection scan electrodes are selected, in a desired unit, from the plurality of detection scan electrodes, to be supplied with a selection pulse, and each of the first and the second detection electrodes is selected from the plurality of detection electrodes.
Abstract:
An input detection system includes a detection device including a plurality of drive electrodes and a plurality of detection electrodes arrayed in a detection region, and a drive electrode scan circuit configured to supply a drive signal to the drive electrodes, and an input device including an LC circuit, a first electrode coupled to one end side of the LC circuit, and a second electrode coupled to the other end side of the LC circuit. The drive electrode scan circuit supplies the drive signal to at least equal to or more than one of the drive electrodes and supplies, to the others of the drive electrodes, an opposite phase signal as a drive signal having an opposite phase to a phase of the drive signal.
Abstract:
A touch panel, a display panel, and a display unit achieving prevention of erroneous detection caused by external noise. The touch panel includes: a plurality of detection scan electrodes extending in a first direction and a plurality of detection electrodes facing the plurality of detection scan electrodes and extending in a second direction which intersects the first direction. A ratio of fringe capacitance to total capacitance between one or more selected detection scan electrodes and a first detection electrode is different from a ratio of fringe capacitance to total capacitance between the one or more selected detection scan electrodes and a second detection electrode. The one or more selected detection scan electrodes are selected, in a desired unit, from the plurality of detection scan electrodes, to be supplied with a selection pulse, and each of the first and the second detection electrodes is selected from the plurality of detection electrodes.
Abstract:
According to one embodiment, a display device includes an illumination device, a display panel modulating light from the illumination device and emitting image light, a polarized light modulation element transmitting the image light from the display panel and diffusing external light, and a magnification mirror magnifying an image by the image light transmitted through the polarized light modulation element. The polarized light modulation element is a liquid crystal lens including a first substrate, a second substrate, a liquid crystal layer held between the first substrate and the second substrate, and a first control electrode and a second control electrode applying voltage to the liquid crystal layer.
Abstract:
The display device includes a display panel and a front surface panel that is superimposed with the display panel, and that is switched between a reflective state in which incident light is reflected and a transmissive state in which incident light is transmitted. The front surface panel can detect presence of an object to be detected.
Abstract:
A detection device includes a plurality of drive electrodes, wherein: in a first mode, a first drive electrode block including a first number of the drive electrodes are supplied with a first drive signal; in a second mode, a second drive electrode block including a second number of the drive electrodes are supplied with a second drive signal; and the first number is different from the second number.
Abstract:
According to one embodiment, a display device includes a display panel including a reflective layer, a liquid crystal element opposing the display panel and a controller that controls the liquid crystal element. The liquid crystal element includes a first substrate, a second substrate, a liquid crystal layer, a first control electrode, a second control electrode, a third control electrode, and a fourth control electrode. The controller applies a first voltage for forming a first lens of a first shape, to the first control electrode and the second control electrode, and a second voltage for forming a second lens of a second shape, to the third control electrode and the fourth control electrode. The first shape is different from the second shape.