Abstract:
A method of producing a digital image with reduced object motion blur, includes capturing at least a first and second digital image of a scene using an exposure time that reduces image blur; combining pixels of the first digital image to produce a third digital image which is brighter than the first and second digital images and has a lower resolution than either the first or second digital images; identifying static and moving regions between the first and second digital images; operating on the first and second digital images to produce a fourth digital image which is brighter than the first and second digital images and has object motion blur; and replacing the moving regions in the fourth digital image with corresponding regions from the third digital image to thereby provide a fifth digital image with reduced object motion blur and increased brightness.
Abstract:
An electronic camera for producing an output image of a scene from a captured image signal includes a first imaging stage comprising a first image sensor for generating a first sensor output and a first lens for forming a first image of the scene on the first image sensor, and a second imaging stage comprising a second image sensor for generating a second sensor output and a second lens for forming a second image of the scene on the second image sensor, where the lenses have different focal lengths. A processing stage uses the sensor output from one of the imaging stages as the captured image signal and uses the images from both imaging stages to generate a range map identifying distances to the different portions of the scene.
Abstract:
Imaging systems and methods for calibrating imaging systems are provided. The imaging system has a body, a scene image capture system that captures images using a taking lens system that can be set to a plurality of different focus distances, and a rangefinder that is capable of determining a distance between the imaging system and at least one portion of a field of view of the taking lens system. The method comprises: automatically capturing a first calibration image of a first field of view through the taking lens system with the taking lens system set to a first focus distance setting; identifying a portion of the first calibration image having a predetermined degree of focus; using the rangefinder to determine a first calibration distance from the imaging device to the identified portion. A focus correlation is determined based upon the first calibration distance and the first focus distance setting.
Abstract:
A method of manufacturing a light-conductive pipe is described comprising the steps of: forming a light pipe mold having an elongated cavity with two optical end faces and an opening for injecting molten material into the cavity distant from either optical end face; providing molten material from a supply of molten material; injecting the molten material through the opening; and cooling and solidifying the molten material to form a light-conductive pipe having an input optical face and an output optical face connected by an elongated body of light-conductive material. Also described are injection molded light-pipes formed by the method, and integrated linear arrays of injection molded light-conductive pipes formed by the method. Optical faceplates may be formed comprising multiple stacked integrated linear arrays of injection molded light-conductive pipes formed by the method, and tiled flat-panel display systems may comprise a plurality of modules aligned in an array, each module comprising a flat-panel display having a plurality of pixels and such an optical faceplate.
Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content, wherein the optical assembly comprises a light transmissive wedge-shaped illumination system with an LED lighting system coupled to an edge of the wedge, and wherein an angled surface of the wedge directs light from the LED lighting system to uniformly irradiate a reflective image display to produce an image that is reflected through the illumination system to provide the displayed content to the user.
Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content. The optical assembly includes absorptive polarizers or anti-reflective coatings to reduce stray light.
Abstract:
Controlling a head-mounted display includes providing a head-mounted display, the head-mounted display includes a switchable viewing area that is switched between a transparent viewing state and an information viewing state. The transparent viewing state is transparent with respect to the viewing area and enables a user of the head-mounted display to view the scene outside the head-mounted display in the user's line of sight. The information viewing state is opaque with respect to the viewing area and displays information in the switchable viewing area visible to a user of the head-mounted display. An external environmental state detector provides an external stimulus notification in response to a detected change in the external environment and causes the viewing state to automatically switch in response to the external stimulus notification.
Abstract:
A head-mounted display apparatus includes a head-mounted display, the head-mounted display including a plurality of independently controllable switchable viewing areas that can each be independently switched between a transparent state and an information state. The transparent state enables a user of the head-mounted display to see the scene outside the head-mounted display through the independently controllable switchable viewing areas. The information state is opaque and displays information in the independently controllable switchable viewing areas visible to a user of the head-mounted display. Circuitry produces a control signal for controlling the states of the independently controllable switchable viewing areas and a controller responsive to the control signal independently switches each of the independently controllable viewing areas between the transparent state and the information state.
Abstract:
A method of capturing a video of a scene depending on the speed of motion in the scene, includes capturing a video of the scene; determining the relative speed of motion within a first region of the video of the scene with respect to the speed of motion within a second region of the video of the scene; and causing a capture rate of the first region of the video of the scene to be greater than a capture rate of the second region of the video of the scene, or causing an exposure time of the first region to be less than exposure time of the second region.
Abstract:
A model based method for capturing an improved archival image, including capturing at least two preview images of a scene that are analyzed for scene brightness and motion velocity in the scene. The analyzed data is used to calculate a ratio of pixel signal rate/pixel velocity which is used to select a capture mode, an ISO and an exposure time for capturing the archival image.