摘要:
The embodiments described herein recite a telephone communication system used for handling information such as messages, typically voice mail messages, and, more particularly, is directed to a system that provides distributed session initiation protocol (SIP) silos. Distributed SIP silos (DSS) is a Communications Application Platform (CAP) feature that maintains the site's call capacity even when a signaling server fails. DSS uses multiple non-redundant signaling servers to provide SIP signaling for the same set of media ports. Because there are multiple signaling servers providing signaling for the same set of ports, the failure of one signaling server only terminates the calls it was actively processing and once those calls have been cleaned up, all the available (non-suspended) ports in the configuration are available to the remaining signaling servers.
摘要:
In general, the disclosure relates to the delivery of therapy according to a detected posture state of a patient. The disclosure contemplates a variety of techniques for managing therapy delivered to a patent. In one example, the disclosure relates to a technique including delivering therapy to a patient from a medical device, wherein the therapy is delivered to the patient according to a detected posture state of the patient; and automatically adjusting at least one aspect of the therapy delivered from a medical device based at least in part on one or more of time or patient posture state behavior, wherein automatically adjusting at least one aspect of therapy comprises suspending at least one aspect of the therapy or decreasing a posture state detection frequency.
摘要:
The disclosure is directed towards posture-responsive therapy. To avoid interruptions in effective therapy, an implantable medical device may include a posture state module that detects the posture state of the patient and automatically adjusts therapy parameter values according to the detected posture state. A system may include an implantable medical device that delivers therapy to a patient according to a set of therapy parameter values while the patient occupies a first posture state, a user interface that receives patient input associating one or more of the therapy parameter values with a second posture state different from the first posture state, and a processor that automatically defines therapy for delivery to the patient when the patient occupies the second posture state based on the associated therapy parameter values.
摘要:
Patient efficacy inputs are received over a period of time during which posture-responsive therapy is delivered to the patient while the patient occupies a plurality of posture states. The patient inputs are correlated with the times at which the inputs were received, a sensed posture state of the patient, and a therapy program defining therapy delivery at each of the times the posture state was sensed. Posture-responsive therapy is adjusted based on the historical posture-responsive therapy information correlating the patient input, patient input time, sensed posture state, and therapy program.
摘要:
The disclosure describes techniques for objectification of posture state-responsive therapy based on patient therapy adjustments. The techniques may include sensing posture states of a patient, delivering posture-state responsive electrical stimulation therapy to the patient based on the sensed posture states, receiving patient adjustments to the electrical stimulation therapy delivered to the patient, determining a number of the patient adjustments received over a time interval, and presenting a representation of the number of the patient adjustments received over the time interval to a user.
摘要:
The disclosure is directed towards posture-responsive therapy. To avoid interruptions in effective therapy, an implantable medical device may include a posture state module that detects the posture state of the patient and automatically adjusts therapy parameter values according to the detected posture state. A system may include an external programmer comprising a user interface that receives user input defining therapy parameter values for delivery of therapy to a patient, and user input associating one or more of the therapy parameter values with a plurality of posture states based on user input, a processor that automatically defines therapy parameter values for delivery of therapy to a patient when the patient occupies the posture states based on the association, and an implantable medical device that delivers the therapy to the patient in response to detection of the posture states.
摘要:
In general, the disclosure relates to the delivery of therapy according to a detected posture state of a patient. The disclosure contemplates a variety of techniques for managing therapy delivered to a patent, including patient and clinician interaction with a medical device configured to deliver therapy according to posture state. In one example, the disclosure relates to a technique including delivering a first therapy to a patient via a medical device, the first therapy associated with a first posture state of the patient; receiving an indication from a user indicating that a second therapy should be delivered, the second therapy associated with a second posture state of the patient; and delivering the second therapy to the patient instead of the first therapy based on the indication.
摘要:
The disclosure describes techniques for data rejection for posture state analysis. The techniques may include storing posture state data sensed by a medical device for a patient, rejecting any portion of the posture state data that was stored during a session that was shorter than a session threshold, and generating posture state output for the patient based on a portion of the posture state data that was not rejected.
摘要:
The disclosure provides a system that displays a posture state indication to a user. A posture state indication represents the current posture state of the patient, which may be a combination of patient posture and activity. As a patient changes posture and activity throughout a daily routine, a posture state detector may generate a posture state value that may be used to categorize the patient's posture or posture and activity level as one of multiple posture states used to adjust therapy. The posture state may be associated with one of multiple posture state indications that may be presented to the patient. The posture state indication shows the patient the posture state currently detected by the posture state detector. The posture state indication may help the patient to effectively monitor therapy changes due to automatic, semi-automatic or patient-directed therapy adjustments made as a function of posture state.
摘要:
Posture-responsive therapy is delivered by the medical system based on posture state input from only one of multiple posture sensors at any given time. An example implantable medical system includes a first posture sensor and a second sensor. A processor controls therapy delivery to the patient based on at least one of a patient posture state or a patient activity level determined based on input from only one of the first or second posture sensors. In some examples, one of multiple posture sensors of an implantable posture-responsive medical system is used to automatically reorient another posture sensor (of the system), which has become disoriented. The disoriented posture sensor may be automatically reoriented for one or more posture states at a time.