Abstract:
This invention discloses a semiconductor power device formed in a semiconductor substrate comprises a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region. The semiconductor power device further comprises a body region, a source region and a gate disposed near the top surface of the semiconductor substrate and a drain disposed at a bottom surface of the semiconductor substrate. The semiconductor power device further comprises source trenches opened into the highly doped region filled with a conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises a buried field ring regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. In an alternate embodiment, the semiconductor power device further comprises doped regions surrounded the sidewalls of the source trenches and doped with a dopant of a same conductivity type of the buried field ring regions to function as a charge supply path.
Abstract:
Carrier management in a wireless communication device assigned a set of two or more carriers by a wireless communication network is disclosed. In one aspect, a method of carrier management includes transmitting data over the wireless communication network on one or more carriers forming a subset of active carriers from the set of carriers assigned to the wireless communication device. A first performance metric is determined indicative of operating conditions across the set of carriers assigned to the wireless communication device. A desired number of carriers on which to transmit data based on the first performance metric is determined. The desired number of carriers on which to transmit data is compared with the number of carriers in the subset of active carriers. The subset of active carriers is dynamically adjusted based on the comparison and subsequent data is transmitted over the wireless communication network using the adjusted subset of active carriers.
Abstract:
A SiGe HBT is disclosed, which includes: a silicon substrate; shallow trench field oxides formed in the silicon substrate; a pseudo buried layer formed at bottom of each shallow trench field oxide; a collector region formed beneath the surface of the silicon substrate, the collector region being sandwiched between the shallow trench field oxides and between the pseudo buried layers; a polysilicon gate formed above each shallow trench field oxide having a thickness of greater than 150 nm; a base region on the polysilicon gates and the collector region; emitter region isolation oxides on the base region; and an emitter region on the emitter region isolation oxides and a part of the base region. The polysilicon gate is formed by gate polysilicon process of a MOSFET in a CMOS process. A method of manufacturing the SiGe HBT is also disclosed.
Abstract:
This invention published a parasitic vertical PNP bipolar transistor in BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) process; the bipolar transistor comprises a collector, a base and an emitter. Collector is formed by active region with p-type ion implanting layer. It connects a p-type buried layer which formed in the bottom region of STI (Shallow Trench Isolation). The collector terminal connection is through the p-type buried layer and the adjacent active region. The base is formed by active region with n type ion implanting which is on the collector. Its connection is through the original p-type epitaxy layer after converting to n-type. The emitter is formed by the p-type epitaxy layer on the base region with heavy p-type doped. This invention also comprises the fabrication method of this parasitic vertical PNP bipolar in BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) process. And this PNP bipolar transistor can be used as the IO (Input/Output) device in high speed, high current and power gain BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) circuits. It also provides a device option with low cost.
Abstract:
In a method for multicast and broadcast synchronization a data payload frame is generated from a data payload. A frame number is assigned to the data payload frame, wherein the frame number includes a generating time of the data payload frame. The data payload frame is distributed to a plurality of base stations in a wireless access system. The offset spans a travel time of a data payload frame from the controller to the plurality of base stations as well as a scheduling time and a multiplexing time.
Abstract:
A folding seat combination is configured for use with and installation on a vehicle such as a golf cart type recreational vehicle. The folding seat combination provides selective positioning of seat, footrest, and backrest components, respectively each between upright and downward positions thereof, to alternately accommodate easy transport of either of additional passengers or materials. With the seat and footrest features in their upright positions and the backrest in its upward position, optional golf bag securing straps may be used to secure golf bags in the cart, as so configured for the transportation of materials rather than passengers in such location. With the footrest in an upright position, relatively loose items stored in an otherwise relatively open storage area of the cart may be contained and prevented from bouncing out during operation the cart.
Abstract:
A parasitic vertical PNP device in one type of BiCMOS process with shallow trench isolation (STI) comprises a collector formed by a p type impurity ion implantation layer inside active area, the bottom of collector connects to a p type buried layer, the p type pseudo buried layer is formed in bottom of shallow trench at both sides of collector active region through ion implantation, deep contacts through field oxide to connect pseudo buried layers and to pick up the collector; a base, formed by n type impurity ion implantation layer which sits on top of above stated collector; an emitter, a p type epitaxy layer lies above base and is connected out directly by a metal contact. Part of the p type epitaxy layer is converted into n type, which serves as connection path of base. Present invented PNP can be used as output device of BiCMOS high frequency circuit. It has a small device area and conduction resistance.
Abstract:
A fixture can include a test fixture that holds an object whose electrostatic charge characteristics are to be measured, means for moving a piece of rubbing material into contact with the object, and means for rubbing a surface of the object. A method for measuring the electrostatic charge characteristics of an object using a test fixture can include: placing the object in the test fixture, moving a piece of rubbing material into contact with the object and rubbing a surface of the object with the piece of rubbing material for a period of time. The rubbing causes an electrostatic charge to be built up on the surface of the object. The electrostatic charge characteristics of the object can be measured and the measured electrostatic charge characteristics of the object can be displayed.
Abstract:
A device and method for resolving conflicts between air interfaces in a wireless communication system are disclosed. In one embodiment, the method comprises communicating over a first air interface, receiving a request for resources for concurrent use in communicating over a second air interface, determining that a conflict does not exist between resources for the first air interface and at least a portion of the requested resources for the second air interface, and concurrently communicating over the first air interface using resources for the first air interface and communicating over the second air interface using at least a portion of the requested resources for the second air interface.