Abstract:
A machining tool, in the area of a tool tip, includes an integrated cooling structure for transporting a coolant. The cooling structure is optionally or in combination designed as a porous structure or at least one cooling channel having a bent reversing segment, so that two channel segments are oriented in opposite directions. The cooling structure is integrated into a base body of a carrier tool. According to a method of the invention, the cooling structure is manufactured by means of a 3D printing method.
Abstract:
A cutting tool for performing cutting operations on a workpiece when the cutting tool is rotated about a central axis by a machine tool, the cutting tool includes a generally cylindrical body disposed about the central axis. The generally cylindrical body includes a first end and an opposite second end. The cutting tool further includes a cutting portion and a mounting portion. The cutting portion is disposed at or about the first end of the generally cylindrical body and includes a number of cutting edges structured to engage the workpiece during cutting operations. The mounting portion is disposed at or about the opposite second end of the generally cylindrical body and is structured to be coupled to the machine tool. At least a portion of the generally cylindrical body comprises a molded portion formed via a molding process about the cutting portion in a manner that couples the cutting portion to the generally cylindrical body.
Abstract:
A machining tool, in particular a drill carrier tool, includes a monolithic base body extending in the axial direction which, at least in one section, has a porous or grid-like core structure that is encased in a solid outer jacket. These measures allow less material to be used, while maintaining good mechanical properties. The porous or grid-like core structure is simultaneously used for transporting coolant. The base body is manufactured in particular by means of a 3D printing method.
Abstract:
A rotary cutting tool includes a cutter of generally cylindrical shape disposed about a central longitudinal axis. The cutter has a first end having an active fluted portion and an opposite second end, the second end having a male threaded portion disposed thereabout. The cutting tool further includes a shank of generally cylindrical shape disposed about the central longitudinal axis, the shank having a recessed female threaded portion formed in a first end. The male threaded portion includes a number of threads disposed at a first pitch and the female threaded portion includes a number of threads disposed at a second pitch different than the first pitch. The cutter and the shank are selectively coupled via threaded engagement of the male threaded portion and the female threaded portion.
Abstract:
In one aspect, cutting tools are provided comprising radiation ablation regions defining at least one of refractory surface microstructures and/or nanostructures. For example, a cutting tool described herein comprises at least one cutting edge formed by intersection of a flank face and a rake face, the flank face formed of a refractory material comprising radiation ablation regions defining at least one of surface microstructures and surface nanostructures, wherein surface pore structure of the refractory material is not occluded by the surface microstructures and surface nanostructures.
Abstract:
Rotary tool, such as a drill or milling cutter, having a main tool body, which extends along a center longitudinal axis, which has a flute and which, at a distance from the center longitudinal axis, has an insert seat which is introduced into the flute wall and in which a cutting insert, in particular made of a superhard material such as PCD or PCBN, is fastened integrally, wherein, for fixing both a radial and also an axial position of the cutting insert, the insert seat has an abutment wall which has a contour for positioning the cutting insert in a rotationally locked manner.
Abstract:
A tool head for use with a modular shank tool includes at least two preforms. Each preform of the at least two prefroms is made separately from the other preform of the at least two preforms from granular materials and then put together and jointly compressed and integrally bonded.