摘要:
A vertical type integrated circuit device includes a substrate and a pillar vertically protruding from the substrate. The pillar includes a lower impurity region and an upper impurity region therein and a vertical channel region therebetween. A portion of the pillar including the lower impurity region therein includes a mesa laterally extending therefrom. The device further includes a first conductive line extending on a first sidewall of the pillar and electrically contacting the lower impurity region, and a second conductive line extending on a second sidewall of the pillar adjacent the vertical channel region. The second conductive line extends in a direction perpendicular to the first conductive line and is spaced apart from the mesa. Related devices and methods of fabrication are also discussed.
摘要:
A semiconductor device may include a fin structure having source/drain regions and channel fins connected between source/drain patterns. A gate insulation layer may be provided on the channel fins. A gate electrode may include lower gate patterns and an upper gate pattern. The lower gate patterns may extend in a vertical direction and contact the gate insulation layer. The upper gate pattern may extend in a second horizontal direction substantially perpendicular to the first horizontal direction. The upper gate pattern may be connected to upper portions of the lower gate patterns.
摘要:
A method of fabricating a semiconductor device for reducing a thermal burden on impurity regions of a peripheral circuit region includes preparing a substrate including a cell active region in a cell array region and peripheral active regions in a peripheral circuit region. A cell gate pattern and peripheral gate patterns may be formed on the cell active region and the peripheral active regions. First cell impurity regions may be formed in the cell active region. A first insulating layer and a sacrificial insulating layer may be formed to surround the cell gate pattern and the peripheral gate patterns. Cell conductive pads may be formed in the first insulating layer to electrically connect the first cell impurity regions. The sacrificial insulating layer may be removed adjacent to the peripheral gate patterns. First and second peripheral impurity regions may be sequentially formed in the peripheral active regions adjacent to the peripheral gate patterns.
摘要:
A memory apparatus and an operation of the memory apparatus which allow quick booting are provided. The memory apparatus includes a volatile memory, a non-volatile memory, and a memory control unit to control input/output of data stored in the volatile memory and the non-volatile memory. The memory control unit restores data, according to a control command input from outside of the memory apparatus, from the non-volatile memory to the volatile memory in an on-demand fashion during booting.
摘要:
According to some embodiments of the invention, a fin type transistor includes an active structure integrally formed with a silicon substrate. The active structure includes grooves that form blocking regions under source/drain regions. A gate structure is formed to cross the upper face of the active structure and to cover the exposed side surfaces of the lateral portions of the active structure. An effective channel length of a fin type transistor may be sufficiently ensured so that a short channel effect of the transistor may be prevented and the fin type transistor may have a high breakdown voltage.
摘要:
In one embodiment, a semiconductor device includes a semiconductor substrate having a lower layer and an upper layer overlying the lower layer. The upper layer is arranged and structured to form first and second active regions that are spaced apart from each other and protrude from an upper surface of the lower layer. A third active region of a bridge shape is distanced vertically from the upper surface of the lower layer and connects the first and second active regions. The device further includes a gate electrode, which is formed with a gate insulation layer surrounding the third active region, so that the third active region functions as a channel.
摘要:
A fin FET structure employs a negative word line scheme. A gate electrode of a fin FET employs an electrode doped with n+ impurity, and a channel doping for a control of threshold voltage is not executed, or the channel doping is executed by a low density, thereby remarkably improving characteristics of the fin FET. A semiconductor substrate is formed in a first conductive type, and a fin active region of a first conductive type is projected from an upper surface of the semiconductor substrate and is connected to the semiconductor substrate. An insulation layer is formed on the semiconductor substrate, and a gate insulation layer is formed in upper part and sidewall of the fin active region. A gate electrode is formed on the insulation layer and the gate insulation layer. Source and drain are formed in the fin active region of both sides of the gate electrode.
摘要:
In a method of forming a nanowire in a semiconductor device, a trench is formed by partially etching a bulk semiconductor substrate. An insulation layer pattern is formed on the substrate to fill up the trench. The insulation layer pattern covers a first region of the substrate where the nanowire is formed, and additionally covers a second region of the substrate connected to the first region. An opening is formed by etching an exposed portion of the substrate by the insulation layer pattern. A spacer is formed on sidewalls of the opening and the insulation layer pattern. The nanowire connected to the second region is formed by anisotropically etching a portion of the substrate exposed by the opening until a portion of the insulation layer pattern formed in the trench is exposed.
摘要:
A scan driver or a power supply in an electron emission display may be controlled to protect the electron emission display when a pulse of a scan signal pauses in an on signal state for a predetermined period.