摘要:
According to some embodiments of the invention, a fin type transistor includes an active structure integrally formed with a silicon substrate. The active structure includes grooves that form blocking regions under source/drain regions. A gate structure is formed to cross the upper face of the active structure and to cover the exposed side surfaces of the lateral portions of the active structure. An effective channel length of a fin type transistor may be sufficiently ensured so that a short channel effect of the transistor may be prevented and the fin type transistor may have a high breakdown voltage.
摘要:
In one embodiment, a semiconductor device includes a semiconductor substrate having a lower layer and an upper layer overlying the lower layer. The upper layer is arranged and structured to form first and second active regions that are spaced apart from each other and protrude from an upper surface of the lower layer. A third active region of a bridge shape is distanced vertically from the upper surface of the lower layer and connects the first and second active regions. The device further includes a gate electrode, which is formed with a gate insulation layer surrounding the third active region, so that the third active region functions as a channel.
摘要:
Methods of forming field effect transistors (FETs) having fin-shaped active regions include patterning a semiconductor substrate to define a fin-shaped semiconductor active region therein, which is surrounded by a trench. At least an upper portion of the fin-shaped semiconductor active region is covered with a sacrificial layer. This sacrificial layer is selectively etched-back to define sacrificial spacers on sidewalls of the fin-shaped semiconductor active region. The electrically insulating region is formed on the sacrificial spacers. The sacrificial spacers are then removed by selectively etching the sacrificial spacers using the electrically insulating region as an etching mask. An insulated gate electrode is then formed on the sidewalls of the fin-shaped semiconductor active region.
摘要:
Methods of forming field effect transistors (FETs) having fin-shaped active regions include patterning a semiconductor substrate to define a fin-shaped semiconductor active region therein, which is surrounded by a trench. At least an upper portion of the fin-shaped semiconductor active region is covered with a sacrificial layer. This sacrificial layer is selectively etched-back to define sacrificial spacers on sidewalls of the fin-shaped semiconductor active region. The electrically insulating region is formed on the sacrificial spacers. The sacrificial spacers are then removed by selectively etching the sacrificial spacers using the electrically insulating region as an etching mask. An insulated gate electrode is then formed on the sidewalls of the fin-shaped semiconductor active region.
摘要:
Provided is a memory device with a shared open bit line sense amplifier architecture. The memory device includes memory cell arrays, each memory cell array including bit lines, and a sense amplifier configured to couple to at least two bit lines a memory cell array and configured to couple to at least two bit lines of a different memory cell array.
摘要:
A semiconductor device may include a fin structure having source/drain regions and channel fins connected between source/drain patterns. A gate insulation layer may be provided on the channel fins. A gate electrode may include lower gate patterns and an upper gate pattern. The lower gate patterns may extend in a vertical direction and contact the gate insulation layer. The upper gate pattern may extend in a second horizontal direction substantially perpendicular to the first horizontal direction. The upper gate pattern may be connected to upper portions of the lower gate patterns.
摘要:
According to some embodiments of the invention, a fin type transistor includes an active structure integrally formed with a silicon substrate. The active structure includes grooves that form blocking regions under source/drain regions. A gate structure is formed to cross the upper face of the active structure and to cover the exposed side surfaces of the lateral portions of the active structure. An effective channel length of a fin type transistor may be sufficiently ensured so that a short channel effect of the transistor may be prevented and the fin type transistor may have a high breakdown voltage.
摘要:
A semiconductor device may include a tubular channel pattern vertically extending from a semiconductor substrate. A gate insulation layer may be provided on faces exposed through the channel pattern. A gate electrode may be provided on the gate insulation layer. The gate electrode may fill the channel pattern. A conductive region, which may serve as lower source/drain regions, may be formed at a surface portion of the semiconductor substrate. The conductive region may contact a lower portion of the channel pattern. A conductive pattern, which may serve as upper source/drain regions, may horizontally extend from an upper portion of the channel pattern.
摘要:
A semiconductor device may include a fin structure having source/drain regions and channel fins connected between source/drain patterns. A gate insulation layer may be provided on the channel fins. A gate electrode may include lower gate patterns and an upper gate pattern. The lower gate patterns may extend in a vertical direction and contact the gate insulation layer. The upper gate pattern may extend in a second horizontal direction substantially perpendicular to the first horizontal direction. The upper gate pattern may be connected to upper portions of the lower gate patterns.
摘要:
A semiconductor device may include a fin structure having source/drain regions and channel fins connected between source/drain patterns. A gate insulation layer may be provided on the channel fins. A gate electrode may include lower gate patterns and an upper gate pattern. The lower gate patterns may extend in a vertical direction and contact the gate insulation layer. The upper gate pattern may extend in a second horizontal direction substantially perpendicular to the first horizontal direction. The upper gate pattern may be connected to upper portions of the lower gate patterns.