Abstract:
A communication apparatus according to an embodiment of the present invention is configured to determine a frequency band of a communication signal by analyzing a power level of the communication signal detected by a detection unit, and control a band setting unit to set the communication frequency band as the determined frequency band of the communication signal, and determine an output band of the communication signal by analyzing the communication frequency band and a waveform of the communication signal, and control a output setting unit to set a communication output band as the determined output band of the communication signal.
Abstract:
Disclosed in the present specification are a wireless power transmission apparatus, and a method therefor. The wireless power transmission apparatus (Tx) according to one embodiment of the present invention comprises: a laser light source unit; a light output unit for outputting, for wireless charging, laser light generated by the laser light source unit to a light receiving unit of a wireless power receiving apparatus; a foreign object (FO) sensing unit for sensing an FO by utilizing supplementary light; and a control unit for controlling the laser light output when an FO is sensed by the FO sensing unit.
Abstract:
The present invention relates to: a vehicle capable of providing a wireless vehicle communication (V2X) service by using a mobile terminal without comprising a wireless communication module; a control method therefor; and a mobile terminal for the same. A method by which a mobile terminal provides V2X, related to one embodiment of the present invention, can comprise the steps of: acquiring, by the mobile terminal, vehicle information from a vehicle through near-field communication (NFC); and relaying V2X data between individuals outside of the vehicle by using a mobile communication module on the basis of the acquired vehicle information.
Abstract:
According to an embodiment of present invention, a wireless power transmitter for a vehicle that transfers power to a wireless power comprising: a resonance circuit comprising a coil assembly and/or a capacitor, wherein the coil assembly comprises first and second bottom coils placed adjacent to each other in a line and each consisting of a single layer of 11 turns and a top coil stacked on the first and second bottom coils and consisting of a single layer of 12 turns; a frequency full bridge driver driving each of coils included in the coil assembly individually, and a placement detection unit detecting a placement of the wireless power receiver.
Abstract:
An electronic device according to an embodiment of the present invention is configured to wirelessly receive electric power from a wireless electric power transfer device. A power reception unit of the electronic device comprises: a core having a predetermined length and having magnetic flux concentration portions formed at lengthwise side portions thereof; and a coil wound along an outer periphery of the core to form magnetic flux density in the magnetic flux concentration portions, the magnetic flux density having a magnitude equal to or larger than a predetermined value.
Abstract:
A wireless power transmitter including a power supply unit configured to supply an input voltage; a power conversion unit configured to generate wireless power based on a driving signal, generated by the supplied input voltage and a first pulse width modulation (PWM) signal, and transfer the wireless power to a wireless power receiver; and a power transmission control unit configured to receive a voltage value of a battery charged with the wireless power through a wireless network, and generate the first PWM signal based on the voltage value of the battery.
Abstract:
The present disclosure provides the structure of a transmission and reception unit in a wireless charging system. To this end, according to an embodiment, there is provided a wireless power receiver configured to receive a wireless power signal from a wireless power transmitter to receive wireless power, and the wireless power receiver may include a receiving coil unit comprising a primary coil and a secondary coil receiving the wireless power signal; and a charger configured to charge power which is a sum of wireless power received by the primary coil and the secondary coil, respectively, based on the wireless power signal.
Abstract:
A method in a wireless power transfer system can include transmitting, to a wireless power transmitter during a ping phase, a response signal in response to a digital ping initiated by the wireless power transmitter, and transmitting, to the wireless power transmitter during a configuration phase, a configuration packet including first control information related to whether the wireless power receiver supports an authentication function. Also, the method can further include receiving, from the wireless power transmitter during a negotiation phase, a capability packet including second control information and a potential power value of the wireless power transmitter, in which the second control information is related to whether the wireless power transmitter supports the authentication function, and receiving power from the wireless power transmitter.
Abstract:
A method in a wireless power transfer system can include, in response to a digital ping initiated by a wireless power transmitter, transmitting to the wireless power transmitter during a ping phase, a response signal. The method can further include transmitting, to the wireless power transmitter during a configuration phase, a configuration packet including first control information related to whether a wireless power receiver supports an authentication function to authenticate the wireless power transmitter; receiving, from the wireless power transmitter during a negotiation phase, a capability packet including second control information and a potential power value of the wireless power transmitter; and transmitting, to the wireless power transmitter during a power transfer phase, an authentication request message.
Abstract:
The present invention relates to a device and a method for performing authentication in a wireless power transmission system. Disclosed in the present specification is an authentication method in a wireless power transmission system, comprising the steps of: receiving, from a target device, a first packet including indication information related to whether the target device supports an authentication function; transmitting an authentication request message to the target device if the target device supports the authentication function; receiving, from the target device, an authentication response message including a certificate for wireless charging in response to the authentication request message; and confirming the authentication of the target device on the basis of the authentication response message.