Abstract:
A method for operating a relay node in a wireless communication system. The method includes communicating, by the relay node, with a base station using a specific subframe for the relay node only; detecting, by the relay node, a problem with a connection between the relay node and the base station; starting, by the relay node, a timer upon detecting the problem with the connection between the relay node and the base station; and releasing, by the relay node, a restriction of using the specific subframe for the relay node only, if the started timer expires. The problem with the connection between the relay node and the base station is associated with a radio link failure.
Abstract:
A method and apparatus for performing communication associated with carrier aggregation are provided. The present description provides a method comprising: configuring, by a user equipment (UE), a primary cell (P-cell) and at least one secondary cell (S-cell); and monitoring, by the UE, at least one physical downlink control channel (PDCCH) transmitted on the at least one S-cell in a subframe if the P-cell is not configured as an uplink subframe in the subframe. In the method, the UE may operate in a half-duplex TDD mode. Further, first TDD configuration can be applied to the P-cell and second TDD configuration different from the first TDD configuration can be applied to the S-cell.
Abstract:
Disclosed is a wireless communication system and terminal for providing a wireless communication service, and more particularly, a method of effectively perform an operation of MDT (Minimization Driving Test) for a specific area or a specific cell in an Evolved Universal Mobile Telecommunications System (E-UMTS) evolved from a UMTS, Long Term Evolution (LTE) System or LTE-Advanced (LTE-A) system.
Abstract:
A method for communicating between a user equipment (UE) and a network in a wireless communication system, the method includes receiving, by the UE, a first multimedia broadcast multimedia service (MBMS) service from a first cell on a first frequency while the UE is in an idle mode; receiving, by the UE, a first system information block (SIB) from the first cell on the first frequency, the first SIB including information on an MBMS service area (SA) provided at a second frequency; receiving, by the UE, a second SIB from a second cell on the second frequency, the second SIB including information on a multimedia broadcast multicast single frequency network (MBSFN) area; and receiving, by the UE, a second MBMS service from the second cell on the second frequency, based on the received information on the MBSFN area.
Abstract:
A method of transmitting and receiving control information in a wireless communication system is disclosed, The method of receiving control information related to a specific point-to-multipoint service in a user equipment of a wireless communication system comprises receiving a notification message including indication information and an identifier identifying the point-to-multipoint service from a network, the indication information indicating at least one downlink channel related to the specific point-to-multipoint service among a plurality of downlink channels established for transmission of control information for at least one or more point-to-multipoint service, and receiving at least one downlink channel indicated by the indication information.
Abstract:
A method of transmitting control information for a multimedia broadcast/multicast service (MBMS) in a wireless communication system, and a method of receiving control information for an MBMS are discussed. The method of transmitting control information according to one embodiment includes transmitting first control information including an MBMS related identifier and a fixed size of a notification bitmap to at least one user equipment; and transmitting second control information which has been changed to the at least one user equipment after the transmission of the first control information. The second control information is transmitted via a multicast control channel (MCCH).
Abstract:
A method and apparatus for supporting a closed subscriber group (CSG) service is provided. A user equipment determines whether a neighbor cell is a CSG member cell for which a CSG whitelist includes a CSG identity of the neighbor cell and PLMN identities of the neighbor cell. The user equipment sends a CSG membership indicator indicating whether the neighbor cell is the CSG member cell.
Abstract:
The present invention relates to a method in which a terminal reports the results of quality measurement based on a specific reference cell from among a plurality of serving cells for the terminal in a mobile communication system using carrier aggregation. The present invention also relates to a terminal apparatus for the method. For this purpose, the terminal receives measurement configuration information from a network, performs a quality measurement in accordance with the received measurement configuration information, determines whether or not a report criterion based on a specific reference cell from among the plurality of cells for the terminal is met in accordance with the measurement result, and, if the report criterion based on the specific reference cell is met, sends a report message, including the measurement results and an indicator that indicates the specific reference cell, to the network.
Abstract:
There is provided a method for enabling a user equipment (UE) to transition between a non-discontinuous reception (Non-DRX) level and at least one discontinuous reception (DRX) level. The UE in a DRX level wakes up periodically to monitor a scheduling channel. The method includes receiving a DRX indicator in a Non-DRX level with continuously monitoring the scheduling channel and transitioning from the Non-DRX level to a DRX level indicated by the DRX indicator. The UE can transition between multiple DRX levels by an explicit command/signaling.
Abstract:
A method for a user equipment (UE) to generate a transmission is provided. In this method, a UE starts a time alignment timer when a time alignment command is received. The UE receives an uplink grant; and generates an initial transmission or a retransmission according to the uplink grant only when the time alignment timer is running upon receiving the uplink grant. In addition, the uplink grant is received through a Physical Downlink Control Channel (PDCCH) indicated by a Cell Radio Network Temporary Identifier (C-RNTI) of the UE.