Abstract:
A method for performing an adaptive modulation and coding scheme in a mobile communication system. Including receiving a signal and selecting a modulation and coding scheme (MCS) level from an MCS subset of an MCS set considering information derived from the signal, by a mobile station. The MCS subset is selected in accordance with a service type related to the mobile station and the MCS subset is configured with one or more MCS levels, the MCS set is represented by 5 bits and the MCS subset is represented by 4 bits to indicate MCS value, respectively, and the 4 bits of the MCS subset is a part of the 5 bits of the MCS set.
Abstract:
The present invention relates to a wireless communication system, and in particular, to a method and an apparatus for transmitting a downlink reference signal in a wireless communication system that supports multiple antennas. The method for transmitting a reference signal for a maximum of eight antenna ports according to one embodiment of the present invention comprises: in a base station, mapping part of a common reference signal for a maximum of four antenna ports into a downlink subframe that includes a 1st slot and a 2nd slot; in the base station, mapping a channel status information reference signal for the maximum of eight antenna ports into the downlink subframe, according to a preset pattern; and in the base station, transmitting the downlink subframe into which the common reference signal and the channel status information reference signal have been mapped, wherein the preset pattern defines the channel status information reference signal for the maximum of eight antenna ports to be mapped onto two OFDM symbols of the data region in the downlink subframe, and wherein part of the common reference signal for the maximum of four antenna ports is limited to the common reference signal for a maximum of two antenna ports.
Abstract:
A method of downlink subchannelization in a wireless communication system includes: transmitting a network entry and network discovery information including an open loop (OL) region parameter; and mapping a physical resource unit (PRU) to a contiguous resource unit (CRU) or a distributed resource unit (DRU) with respect to ith frequency partition based on the OL region parameter, wherein a permutation sequence used for mapping a PRU of the ith frequency partition (PRUFPi) to a CRU of the ith frequency partition (CRUFPi) or a DRU of the ith frequency partition (DRUFPi) is determined by a seed value, and the seed value is set to be a particular value according to the value of the OL region parameter.
Abstract:
A method for performing an adaptive modulation and coding scheme in a mobile communication system. Including receiving a signal and selecting a modulation and coding scheme (MCS) level from an MCS subset of an MCS set considering information derived from the signal, by a mobile station. The MCS subset is selected in accordance with a service type related to the mobile station and the MCS subset is configured with one or more MCS levels, the MCS set is represented by 5 bits and the MCS subset is represented by 4 bits to indicate MCS value, respectively, and the 4 bits of the MCS subset is a part of the 5 bits of the MCS set.
Abstract:
A method for correcting errors in a multiple antenna system based on a plurality of sub-carriers and a transmitting/receiving apparatus supporting the same are disclosed. The method includes determining a phase shift based precoding matrix phase shifted at a predetermined phase angle, initially transmitting each sub-carrier symbol to a receiver in a packet unit by using the phase shift based precoding matrix, reconstructing the phase shift based precoding matrix to reduce a spatial multiplexing rate it a negative reception acknowledgement (NACK) is received from the receiver, and retransmitting the initially transmitted sub-carrier symbol by using the reconstructed phase shift based precoding matrix or by changing the phase shift based precoding matrix using offset information fed back from the receiver or random offset information.
Abstract:
A method for transmitting a reference signal in a multi-antenna system is provided. The method includes: selecting at least one orthogonal frequency division multiplexing (OFDM) symbol in a subframe containing a plurality of OFDM symbols; allocating a channel quality indication reference signal (CQI RS) capable of measuring a channel state for each of a plurality of antennas to the selected at least one OFDM symbol; and transmitting the CQI RS, wherein the CQI RS is allocated to an OFDM symbol which does not overlap with an OFDM symbol to which a common reference signal to be transmitted to all user equipments in a cell or a dedicated reference signal to be transmitted to a specific user equipment in the cell is allocated.
Abstract:
A user equipment in wireless communication system is provided. The user equipment includes an antenna unit including a plurality of antennas, a control unit for grouping the plurality of antennas into a predetermined number of antenna groups and controlling separately transmission power of each of the predetermined number of antenna groups, and a transmitting unit, connected to the control unit, for transmitting at least one of data and control information to a base station via at least one of the predetermined number of antenna groups.
Abstract:
A method for correcting errors in a multiple antenna system based on a plurality of sub-carriers and a transmitting/receiving apparatus supporting the same are disclosed. The method includes determining a phase shift based precoding matrix phase shifted at a predetermined phase angle, initially transmitting each sub-carrier symbol to a receiver in a packet unit by using the phase shift based precoding matrix, reconstructing the phase shift based precoding matrix to reduce a spatial multiplexing rate if a negative reception acknowledgement (NACK) is received from the receiver, and retransmitting the initially transmitted sub-carrier symbol by using the reconstructed phase shift based precoding matrix or by changing the phase shift based precoding matrix using offset information fed back from the receiver or random offset information.
Abstract:
A method performed by a base station (BS) is provided for receiving aperiodic channel state information (CSI). The BS transmits a CSI request field which is set to trigger a CSI report to a user equipment (UE), and receives CSI through a physical uplink shared channel (PUSCH) from the UE. The CSI request field has a value among a plurality of candidate values and the plurality of candidate values comprises a first value which triggers an aperiodic CSI report for a first set of reference signals and a second value which triggers an aperiodic CSI report for a second set of reference signals. The first set and the second set of reference signals are configured by a higher layer signal.
Abstract:
The present invention relates to a terminal which receives signals from a base station, and to a method in which the terminal receives signals from the base station in a distributed antenna system (DAS). The terminal receives, from the base station having a plurality of antennas, control information on one or more active transmission antennas allocated to the terminal, from among the plurality of antennas, and receives signals from the base station via said one or more active transmission antennas.