Abstract:
A technique for receiving and transmitting downlink reference signals is disclosed. When transmitting downlink data demodulation reference signals (DMRS) (or reference signals for downlink data demodulation) by using two or more layers, the DMRS of each layer may be multiplexed by using a code division multiplexing method and then transmitted. The DMRS for each of the two or more layers may be used for one user equipment or for two or more user equipments. And, downlink control signals for transmitting and receiving such DMRS may be configured to have the same format regardless of a single-user mode (or SU-MIMO mode) or a multi-user mode (or MU-MIMO mode), thereby being used.
Abstract:
A method of transmitting control information includes dividing frequency bandwidth into ranges to which the same PMI (precoding matrix index) is applied, obtaining multiple antenna information by the range to which the same PMI is applied and transmitting the multiple antenna information. Since multiple antenna information is transmitted by the unit of a range to which the same PMI is applied, radio resources allocated for transmitting the multiple antenna information may be reduced, thereby enhancing data transmission efficiency.
Abstract:
A method for efficiently transmitting and receiving downlink control information is disclosed. The method includes, at a base station, receiving feedback information including a precoding matrix index (PMI) from a user equipment (UE) and transmitting precoding information having a predetermined bit number according to the number of antenna ports and a transmission mode of the base station. The precoding information of a predetermined transmission mode in the precoding information includes confirmation information indicating that the base station uses a PMI which is recently received from the UE.
Abstract:
A method and apparatus for transmitting a signal in a wireless communication system are provided. The method includes: generating R spatial streams each of which is generated on the basis of an information stream and a reference signal; generating N transmit streams on the basis of the R spatial streams and a precoding matrix (where R
Abstract:
A method for efficiently transmitting and receiving downlink control information is disclosed. The method includes, at a base station, receiving feedback information including a precoding matrix index (PMI) from a user equipment (UE) and transmitting precoding information having a predetermined bit number according to the number of antenna ports and a transmission mode of the base station. The precoding information of a predetermined transmission mode in the precoding information includes confirmation information indicating that the base station uses a PMI which is recently received from the UE.
Abstract:
A method and apparatus for transmitting a signal in a wireless communication system are provided. The method includes: generating R spatial stream each of which is generated on the basis of an information stream and reference signal; generating N transmit streams on the basis of the R spatial streams and a precoding matrix (where R
Abstract:
A method for transmitting, by a base station, signals in a communication system. Control information for a subsidiary carrier band is transmitted to a mobile station via a primary carrier band. Data is transmitted to the mobile station via the subsidiary carrier band based on the control information and via the primary carrier band. Furthermore, the primary carrier band is a carrier frequency band which the mobile station initially attempts to access or via which information of a carrier aggregation configuration is transmitted. Additionally, the control information includes a logical index assigned to the subsidiary carrier band for the mobile station and a physical index of a frequency allocation band used as the subsidiary carrier band. The physical index corresponds to one of plural absolute frequency band indexes assigned to frequency allocation bands available in the communication system.
Abstract:
A method for specifying a transport block-to-codeword mapping relationship and a method for transmitting a downlink signal using the same are described. If a swap flag has a first logic value, a first transport block is mapped to a first codeword and a second transport block is mapped to a second codeword. If the swap flag has a second logic value, the first transport block is mapped to the second codeword and the second transport block is mapped to the first codeword. If the size of any one of two transport blocks is 0, the swap flag is not used.
Abstract:
A method of transmitting an acknowledgment (ACK)/non-acknowledgement (NACK) signal in a wireless communication system includes assigning at least one ACK channel among a plurality of ACK channels which share an ACK channel region for transmitting the ACK/NACK signal, and transmitting the ACK/NACK signal through the at least one ACK channel, wherein the ACK channel region includes at least one tile including a plurality of data subcarriers, and the ACK/NACK signal of each ACK channel is indicated by mapping different orthogonal vectors respectively to the plurality of ACK channels in the tile.
Abstract:
A technique for receiving and transmitting downlink reference signals is disclosed. When transmitting downlink data demodulation reference signals (DMRS) (or reference signals for downlink data demodulation) by using two or more layers, the DMRS of each layer may be multiplexed by using a code division multiplexing method and then transmitted. The DMRS for each of the two or more layers may be used for one user equipment or for two or more user equipments. And, downlink control signals for transmitting and receiving such DMRS may be configured to have the same format regardless of a single-user mode (or SU-MIMO mode) or a multi-user mode (or MU-MIMO mode), thereby being used.