Abstract:
A system may receive, from a user device, a request to receive content via a first base station, where the content was previously being received, as multicast content, via a second base station; determine, in response to the request, whether the first base station can process multicast content; transmit a copy of the content, to the user device via the first base station, as multicast content, based on a determination that the first base station can process multicast content; and transmit the content, to the user device via the first base station, as unicast content, based on a determination that the first base station cannot process multicast content.
Abstract:
A system may receive a connection request, from a user device, that includes information identifying a particular application; identify that the particular application is associated with a group of classes of traffic; establish a group of bearer channels that are associated with the group of classes of traffic, the group of bearer channels being associated with a group of different levels of quality of service (“QoS”); process, via a first bearer channel and according to a first level of QoS, first traffic associated with the user device and the particular application; and process, via a second bearer channel of the group of bearer channels, according to a second level of QoS, second traffic associated with the user device and the particular application, the second bearer channel being different from the first bearer channel, and the second level of QoS being different from the first level of QoS.
Abstract:
A device may receive a packet, may identify a first packet characteristic associated with the packet, may identify a second packet characteristic associated with the packet, and may store information associated with the packet in a queue based on the first packet characteristic and the second packet characteristic. The device may service the packet from the queue based on an automatic repeat requester (“ARQ”) mechanism. The ARQ mechanism may specify a maximum quantity of times that the packet should be serviced before being dropped, when a packet acknowledgement is not received, may specify a time period between packet service attempts, and may be based on the first packet characteristic and the second packet characteristic.
Abstract:
Video content may be delivered in a wireless network based on network load information relating to radio interfaces for the wireless network. A method may include receiving a request, from a set-top box, for video content from the set-top box to the wireless network and determining, based on the load information, whether a portion of the wireless network corresponding to the set-top box is in a first state or a second state. The network may further include transmitting the video content when the portion of the network corresponding to the set-top box is in the first state and delaying transmission of the video content when the portion of the network corresponding to the set-top box is in the second state, until the portion of the network corresponding to the set-top box enters the first state.
Abstract:
A first navigation device records first direction information as the first navigation device traverses a route from a first location to a second location, and transmits the first direction information to a second navigation device while the second navigation device is following the first navigation along the route. After recording the first direction information and while transmitting the first direction information, the first navigation device records second direction information as the first navigation device traverses the route from the second location to a third location. The first navigation device transmits the second direction information to the second navigation device. The first direction information and the second direction information include information that allows the second navigation device to follow the route traversed by the first navigation device.
Abstract:
A device, provided at a network edge, receives a radio frequency signal from a user equipment, and converts the radio frequency signal into an electrical signal. The device also receives, from a network controller, at least one of control information, schedule information, or congestion management information. The device performs baseband signal processing on the electrical signal, based on at least one of the control information, the schedule information, or the congestion management information, to create a modified signal. The device provides the modified signal to the network controller.
Abstract:
A system receives traffic information that identifies an application installed on a user device and resources being used to process traffic associated with the application; obtains, as a result of receiving the traffic information, a policy that identifies a particular amount of resources authorized for processing particular traffic associated with the application; determines that an amount of the resources being used to process the traffic exceeds the particular amount of resources authorized for processing the particular traffic; and transmits a notification to cause the traffic to be controlled by a base station to reduce the amount of the resources to a level less than the particular amount of resources.
Abstract:
A method may include monitoring available radio access networks for information on one or more of types of radio access technologies, measurements of signal quality, measurements of signal strengths, or carrier identifiers of the available radio access networks; calculating network priorities for the available radio access networks based on the monitored information; detecting a border condition, the border condition based on a decrease in the measurements of signal quality or the measurements of signal strength; selecting, when a border condition is detected, a new radio access network from the available radio access networks based on the calculated network priorities of the available radio access networks; and connecting to a communication channel using the selected available radio access network.
Abstract:
A mobile device may determine applications that are executed by the mobile device. The mobile device may further determine handoff parameters, relating to performance of a handoff operation in a cellular network. The handoff parameters may be determined based on the applications being executed by the mobile device. A handoff operation may be performed based on the determined handoff parameters.
Abstract:
An outdoor broadband unit implements full IP-based routing between a wide area network (WAN)-side interface (such as a Long-Term Evolution (LTE) air interface) and a local area network (LAN)-side interface (such as a home network using MoCA protocol). The outdoor broadband unit maintains a routing table for all connections through an internal routing system based on matching between WAN-side Internet Protocol (IP) addresses and/or ports and LAN-side IP addresses and/or ports. The outdoor broadband unit may support both connection-oriented transport layer routing (such as Transmission Control Protocol (TCP)) and connectionless transport layer routing (such as User Datagram Protocol (UDP)).