摘要:
An exemplary method includes receiving a trimap for an image that specifies a background region, a foreground region and an unknown region for the image wherein a boundary exists between the foreground region and the unknown region and wherein another boundary exists between the unknown region and the background region, solving a set of Poisson equations having boundary conditions for the two boundaries to provide a matte that distinguishes a foreground region from a background region in the unknown region, and refining the matte by solving a set of Poisson equations for a local unknown region. Various other exemplary technologies are also presented.
摘要:
Methods for synthesizing progressively-variant textures based on texton masks are provided. A first method creates a synthesized texture image guided by a sample texture, first texton mask corresponding to the sample texture and a second texton mask modified based on the first texton mask. A second method also creates a synthesized texture image guided by a first and second sample textures and corresponding first and second texton masks. A method for rendering a synthesized texture on an image of a three-dimensional object includes creating a synthesized texture on the object guided by a two-dimensional progressively-variant sample texture, a texton mask for the sample texture and a mesh of a plurality of vertices representing the object.
摘要:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.
摘要:
A radiometric calibration system finds an inverse response function of a camera from a single digital image of a scene in which the actual colors of the scene are not known a priori. The system analyzes pixels of the image that correspond to an “edge” between two colors of the scene. These “edge” pixels represent a blended color formed from these two “component” colors, as measured by the camera. The system determines an inverse response function at least in part by: (a) finding suitable edge pixels; and (b) determining a function that maps the measured blended colors of edge pixels and their measured component colors into linear distributions. Reference data that includes predetermined inverse response functions of known cameras can be used in determining an inverse response function via a Bayesian Estimation.
摘要:
The described systems and methods are directed at interactively rendering graphics using precomputed radiance transfer (PRT). A reflectance matrix that represents the reflectance of a particular object to be rendered is determined. Source lighting associated with the object is represented using basis functions. The reflectance matrix is factored into view and light components. A raw transfer matrix is determined based, in part, from the factored reflectance matrix and the source lighting. The raw transfer matrix is partitioned to obtain transfer matrices, which are used to render the object. The described systems and methods are capable of rendering glossy objects with well-defined shadows.
摘要:
A computer implemented method for generating a representation of structure for use in rendering a synthesized image is provided. The representation is a view-dependent displacement mapping that represents displacements along a viewing direction. This view dependency allows the representation to be used to determine self shadows as well as shading, occlusion and silhouettes when used during rendering for synthesis.
摘要:
Knitwear modeling is disclosed. A macrostructure corresponding to a three-dimensional object is generated, based on a stitch pattern and optionally a color pattern. Yarn microstructure is generated and applied to the macrostructure to yield a knitwear model. The stitch positions of the macrostructure can be perturbed to achieve stitch position irregularities. The fluffiness of the yarn microstructure can be controlled. In an alternative embodiment, a two-dimensional knitwear texture is generated, which can then be mapped to a three-dimensional object to yield a knitwear model.
摘要:
In one embodiment, a longitudinal camera array is rotated through a capture cylinder, with each camera in the array capturing multiple images as the array rotates. These images can be looking outward along the radials of the cylinder, or alternatively looking tangential to the cylinder. The longitudinal camera array allows the surrounding scene to be captured from multiple different planes that are substantially parallel to the ends of the capture cylinder, allowing for more accurate subsequent rendering of the scene. A view of the scene can be subsequently rendered by determining a location and direction of view of an observer, and then selecting one or more of the multiple lateral and longitudinally adjacent capture images, as well as one or more pixels within that capture image(s), to use to determine a display value for the pixel.
摘要:
A system and process for rendering a virtual reality environment having an image-based background, which allows a viewer to move about and interact with 3D graphic objects in a virtual interaction space of the environment. This is generally accomplished by first rendering an image-based background, and separately rendering geometry-based foreground objects. The foreground objects are then integrated into the background, and a combined image is presented to the viewer.
摘要:
A minimum sampling rate and a minimum sampling curve for continuous representation of a scene are disclosed. The minimum sampling rate for light-field rendering is determined in accordance with Δ t max = 1 2 K Ω v fh d , where K&OHgr;v accounts for a light-field signal cut-off frequency, a sampling camera resolution and an output resolution, ƒ specifies a sampling camera focal length, and hd specifies a light-field depth range. The minimum sampling curve for image-based rendering is determined as constrained by Nd=2K&OHgr;vƒhd&Dgr;t, Nd≧1, where Nd is the number of depth layers, &Dgr;t specifies a sampling interval along a t direction. Where IBR is be performed under uncertain depth, the curve is determined as Δ t max = min z e ( z e + Δ η ) ( z e - Δ η ) 4 fK Ω v Δ η , where &Dgr;tmax specifies a maximum sampling interval along a t direction, ze specifies an estimated depth, and &Dgr;&eegr; specifies a depth error.