Abstract:
Systems and methods are provided for computing a relative path delay between multiple transmitting source to select a source that is closest to a receiving device. Preamble sequences unique to each source are received by a receiving device. The receiving devices determines based on a channel estimation or differential algorithm which transmitting source is closer to the receiving device. The channel estimation algorithm computes the path delay based on a channel estimation correlation at different preamble sequence indices. The differential algorithm computes the path delay based on a correlation between the received and transmitted preamble sequences at different preamble sequence indices. The receiving device selects the closer of the multiple sources to be the source from which to extract data.
Abstract:
Signal power of a received signal, which has a plurality of preamble sequences associated with sub-carrier signals received from a plurality of sub-carriers, in a cellular Orthogonal Frequency Division Multiplexing system may be estimated by estimating as power for at least one preamble sequence of a signal received at a selected receive antenna. The preamble sequence is associated with a base station and a set of sub-carriers. A differential received signal developed for one of the set of sub-carriers is correlated with a normalized differential transmit signal for the preamble sequence, and the estimate of the power for the at least one preamble sequence is extracted based on the correlation.
Abstract:
A receiver device detects a plurality of symbols in a signal and determines, based on the one of the plurality of detected symbols, an estimated beginning of a subsequent frame. The receiver device determines whether the estimated start of the subsequent frame corresponds to an actual start of the subsequent frame. When the estimated start of the subsequent frame corresponds to the actual start of the subsequent frame, the receiver is synchronized to the actual start of the frame. When the estimated start of the subsequent frame does not corresponds to the actual start of the subsequent frame, the receiver device determines, based on a further one of the plurality of detected symbols, an estimated beginning of another subsequent frame. The receiver device determines whether the estimated start of the other subsequent frame corresponds to an actual start of the other subsequent frame.
Abstract:
Systems and methods are provided for determining a successive interference cancellation (SIC) decoding ordering in a multiple input multiple output transmission (MIMO) system with retransmissions. A plurality of codewords is transmitted in a current transmission time. Some of the codewords may have been previously transmitted in previous transmission attempts according to a retransmission protocol. The plurality of codewords is received and an ordering metric is computed for a received codeword based on channels associated with multiple transmission attempts of the codeword. A decoding ordering of the codewords is determined based on the computed ordering metric. Performance parameters such as Packet Error Rate (PER), channel gain, and/or equalizer-output Signal-to-Interference and Noise Ratio (SINR) may be used to evaluate a channel quality for each one of the transmission attempts of the codeword. The ordering metric may be updated recursively with each transmission attempt.
Abstract:
Systems and methods for reconstructing digital information in a multiple-input receiver from signals transmitted by a multiple-output transmitter, in a multiple-input multiple-output (MIMO) communications channel are provided. A plurality of signal streams are obtained from a plurality of transmitted signals and a first candidate signal value is selected for each of the plurality of signal streams. A plurality of additional candidate signal values are also selected for each of the plurality of signal streams in response to selecting the first candidate signal value. A log-likelihood ratio (LLR) is computed from the plurality of signal streams based on all of the selected candidate signal values. Digital information may then be estimated based on the computed LLR.
Abstract:
Systems and methods for performing efficient blind decoding. A first plurality of decision metrics corresponding to a first repetition of periodic decoding information is stored. The first plurality of decision metrics is grouped into sequential portions. A plurality of combined versions of the sequential portions is stored into combining buffers arranged in sequence. Each combined version is associated with a different sequence of timing information. A first of the plurality of combined versions stored in a first of the combining buffers is combined with a second version of a second plurality of decision metrics that corresponds to a second repetition of the periodic decoding information. The second version is associated with timing information adjacent in the timing information sequence to the timing information associated with the first combined version. The data is decoded based on information in the combining buffers.
Abstract:
A computer readable storage medium or media stores machine readable instructions that, when executed by one or more processors, cause the processors to generate, using reference signals received via a first communication channel from a first communication device to a second communication device, an estimate of the first communication channel using the received reference signals, calculate one or more transmit beamforming vectors using the estimate of the first communication channel, and utilize the one or more transmit beamforming vectors to process signals to be transmitted via a second communication channel from the second device to the first device. The first device processes the signals to be transmitted from the second device to the first device according to a model H ei, where H is a matrix representing the second communication channel and ei is a vector with all components of ei, except an ith component, being equal to zero.
Abstract:
Systems and methods are provided for decoding a signal vector in a transmit diversity scheme for varying channels. Information obtained in more than one symbol period are treated as a single received vector, and each of the received signal vectors may be processed to reduce the effects of varying channel characteristics. The received signal vectors may be combined by addition and decoded using a maximum-likelihood decoder. In some embodiments, the received signal vectors are processed separately and then combined. In other embodiments, the received signal vectors are combined and then processed. In some embodiments, zero-forced linear equalization techniques are used to processed the received signals. In some embodiments the signal vectors and varying channel response matrices are broken down to equivalent forms in order to simplify the processing.
Abstract:
Methods and apparatus are provided for soft-decision maximum likelihood demodulation to decode a data vector transmitted in a multiple-input multiple-output (MIMO) communications channel. Soft-decision demodulators are disclosed that implement sphere decoding to reduce complexity of demodulation while preserving optimal performance. Candidate signal values associated with the transmitted data vector may be obtained and partitioned into signal bit groups. A sphere search may be performed over the candidate signal values within a search radius value to determine a smallest distance metric for each signal bit group. The search radius value may be updated based on a current smallest distance metric for each signal bit group. A log-likelihood ratio (LLR) may be computed from the determined smallest distance metrics for each signal bit group using a soft-decision demodulator.
Abstract:
A mobile station including an estimation module, a filter module, and a control module. The estimation module is configured to generate first channel estimates based on an input signal received, through a channel, from a base station. The input signal includes subcarriers used by the base station to transmit preamble sequences. The filter module is configured to generate second channel estimates by filtering the first channel estimates using a first filter or a second filter. The first filter or the second filter is selected according to a number of the subcarriers used to transmit the preamble sequences. The control module is configured to, based on the first channel estimates and the second channel estimates, estimate (i) one of the preamble sequences and (ii) the channel.