Autonomous robot tracking
    31.
    发明授权

    公开(公告)号:US12035979B2

    公开(公告)日:2024-07-16

    申请号:US17536312

    申请日:2021-11-29

    Abstract: A system for tracking the position of a surgical tool manipulated by a surgical robotic system, to determine that the tool is correctly positioned and orientated. Miniature 3-D tracking cameras are mounted on the end effector of the robotic system, one viewing markers on the surgical tool, and the other markers attached to the anatomy part being operated on. The initial spatial position and orientation of the surgical tool on the surface of the anatomy part is measured, and the progress of the surgical tool into the anatomic body part is tracked using one of the miniature cameras. The cameras or sensors are close to the surgical region of interest, and all the mechanical and sensor elements necessary for the system operation are mounted within the realm of the robot. The system thus avoids interruption of communication between a remotely positioned navigation camera and the robot or patient.

    SHAPER FOR VERTEBRAL FIXATION RODS
    34.
    发明公开

    公开(公告)号:US20230293215A1

    公开(公告)日:2023-09-21

    申请号:US18200303

    申请日:2023-05-22

    Abstract: A system for rod bending for use in robotic spinal surgery, enabling the correct bending of a fusion rod to match the shape required to accurately pass through the heads of the pedicle screws. The system uses data generated by information provided to the robot by the surgeon's preoperative plan, optionally augmented by feedback from the robot control system of deviations encountered intraoperatively. Such deviations could occur, for example, when the surgeon decides intraoperatively on a different trajectory or even to skip screws on one vertebra, in which case, the robot will be commanded to perform the alternative procedure, with commensurate instructions relayed to the control system of the rod-bending machine. The system is also able to thin down the rod at predetermined locations along its length, adapted to be at selected intervertebral locations, for maintaining limited flexibility between vertebrae, instead of fixating them.

    Balloon dilator
    35.
    发明授权

    公开(公告)号:US11701099B2

    公开(公告)日:2023-07-18

    申请号:US16301443

    申请日:2017-05-15

    Abstract: A balloon dilator device, comprising an annularly shaped, cylindrical type structure having walls that are expandable from a radially collapsed state to a radially expanded state by inflation of a balloon inserted within the annular structure. Once the walls have been expanded, they remain in the expanded state even if the balloon is deflated, because the radially expanded state is a state of minimum mechanical potential energy, and in order to return to the collapsed state, the structure would have to pass a state of higher potential energy. The device walls require sufficient stiffness in their longitudinal direction to enable the device to be pushed into a minimally invasive incision made in the subject. This device stiffness can be achieved either by its mechanical material properties, or by its substantially closed wall structure, or by use of a stiff protector sheath used to protect the walls during insertion.

    GLOBAL BALANCE USING DYNAMIC MOTION ANALYSIS

    公开(公告)号:US20220395330A1

    公开(公告)日:2022-12-15

    申请号:US17888818

    申请日:2022-08-16

    Abstract: An exemplary method of determining a surgical spinal correction for a subject using analysis of motion capture images of the subject, which uses the steps of obtaining pre-operative three-dimensional images of a spinal region, obtaining a pre-operative time sequenced set of images of the subject during a movement progression of said subject, calculating in a plurality of the motion capture images, alignment parameters relating to upper and lower body regions of the subject, and determining if any of the calculated alignment parameters are outside their predetermined acceptable ranges in one or more of the images, iteratively adjusting anatomical elements in three-dimensional images until all of the calculated alignment parameters are within their predetermined acceptable ranges; and adjusting spinal anatomy in the three-dimensional images according to the degree of adjustment of spinal parameters in the motion capture images to determine a surgical spinal correction.

    AUTONOMOUS ROBOT TRACKING
    37.
    发明申请

    公开(公告)号:US20220168048A1

    公开(公告)日:2022-06-02

    申请号:US17536312

    申请日:2021-11-29

    Abstract: A system for tracking the position of a surgical tool manipulated by a surgical robotic system, to determine that the tool is correctly positioned and orientated. Miniature 3-D tracking cameras are mounted on the end effector of the robotic system, one viewing markers on the surgical tool, and the other markers attached to the anatomy part being operated on. The initial spatial position and orientation of the surgical tool on the surface of the anatomy part is measured, and the progress of the surgical tool into the anatomic body part is tracked using one of the miniature cameras. The cameras or sensors are close to the surgical region of interest, and all the mechanical and sensor elements necessary for the system operation are mounted within the realm of the robot. The system thus avoids interruption of communication between a remotely positioned navigation camera and the robot or patient.

    AUTOMATED ROBOTIC RETRACTOR
    38.
    发明申请

    公开(公告)号:US20220151714A1

    公开(公告)日:2022-05-19

    申请号:US17476094

    申请日:2021-09-15

    Abstract: Systems and methods for robotic retraction of tissues in a surgical field. Two retractor mechanisms are used on either side of an incision. Each retractor is adapted to be held by a robotic arm, which applies force on the retractor mechanism to pull dissected tissue away from the incision, thus revealing the operative field. A force sensor is employed to measure the force on the retractor, an optional tracking sensor may be used to measure the extent of tissue retraction in two or three dimensions, and both sources of information provided to the robotic controller. By monitoring feedback from either the force sensor or the tracking sensor, the system is able to maintain equal retraction on both sides of the incision. The retractor elements incorporate mechanisms that move down the tissue as the retractors are pulled laterally.

    SHAPER FOR VERTEBRAL FIXATION RODS
    40.
    发明申请

    公开(公告)号:US20170360493A1

    公开(公告)日:2017-12-21

    申请号:US15533037

    申请日:2015-12-04

    Abstract: A system for rod bending for use in robotic spinal surgery, enabling the correct bending of a fusion rod to match the shape required to accurately pass through the heads of the pedicle screws. The system uses data generated by information provided to the robot by the surgeon's preoperative plan, optionally augmented by feedback from the robot control system of deviations encountered intraoperatively. Such deviations could occur, for example, when the surgeon decides intraoperatively on a different trajectory or even to skip screws on one vertebra, in which case, the robot will be commanded to perform the alternative procedure, with commensurate instructions relayed to the control system of the rod-bending machine. The system is also able to thin down the rod at predetermined locations along its length, adapted to be at selected intervertebral locations, for maintaining limited flexibility between vertebrae, instead of fixating them.

Patent Agency Ranking