Abstract:
A system on chip includes a secure processing unit (SPU), an artificial intelligence/machine learning accelerator (AI/ML accelerator), a memory inline cypher engine, and a central processing unit (CPU). The SPU is used to store biometrics of users. The AI/ML accelerator is used to process images, and analyze the biometrics of users. The AI/ML accelerator includes a micro control unit (MCU) for intelligently linking access identifications (IDs) to version numbers (VNs). The inline cypher engine is coupled to the AI/ML accelerator and the SPU for receiving a register file from the MCU, encrypting data received from the AI/ML accelerator, and comparing the biometrics of the users received from the SPU with the data. The CPU is coupled to the SPU and the AI/ML accelerator for controlling the SPU and the AI/ML accelerator.
Abstract:
A system for model protection includes a processor. The processor is arranged to execute a guest virtual machine (VM), a primary VM, and a hypervisor. The guest VM includes a model, and is arranged to send at least one command to a command hub. The primary VM is arranged to refer to the at least one command sent from the command hub to manage and configure a protection setting for a protected model derived from the model. The hypervisor is arranged to receive a safety setting command sent by the primary VM, and manage and configure the safety protection component according to the safety setting command, to set a read-only mode of the protected model.
Abstract:
A system for kernel protection includes a processor and a transmission interface. The processor is arranged to execute at least one guest virtual machine (VM), at least one primary VM, and a hypervisor. The at least one guest VM is arranged to send at least one command to a command hub. The at least one primary VM is arranged to manage and configure a safety setting according to the at least one command from the command hub and at least one policy, and manage and configure a safety protection component according to the safety setting. The hypervisor is arranged to manage and configure the safety protection component according to a ground rule and at least one safety setting command from the at least one primary VM. The transmission interface is arranged to bind the at least one primary VM to the hypervisor.
Abstract:
A system controls access to a physical address (PA) space. The system includes multiple system resources addressable within the PA space, and multiple processing circuits executing multiple virtual machines (VMs). A given region of the PA space is dedicated to addressing the VMs. The system also includes multiple memory management units (MMUs) coupled to corresponding processing circuits. A given MMU is operative to translate a virtual address indicated in an access request from a processing circuit into a requested PA that is accessible by the processing circuit according to a configurable setting of the given MMU. The system further includes multiple memory protection units (MPUs). A given MPU, which is coupled to a target system resource allocated with the requested PA, is operative to grant or deny the request based on information indicating whether the requested PA is accessible to a requesting VM executed on the processing circuit.
Abstract:
A controller and a memory-access method for use in the controller are provided. The controller includes a sensor-processing system, and the sensor-processing system includes a memory, and a buffer, wherein the controller is coupled to an external memory and a sensor. The method includes the steps of: gathering the sensor data from the sensor and writing the gathered sensor data into the memory; writing information associated with the sensor data into the buffer; determining whether a fill level of the buffer has reached a predetermined threshold; and retrieving the sensor data from the memory and writing the retrieved sensor data to the external memory according to the information associated with the stored sensor data in the buffer when it is determined that the fill level has reached the predetermined threshold.
Abstract:
A dynamic data distribution method in a private network and an associated electronic device are provided. The private network includes: a first pairing connection between a first electronic device, a second electronic device, and a second pairing connection between the first electronic device and a third electronic device. The method includes the steps of: receiving sensor data from the second electronic device by the first electronic device; notifying the second electronic device to build a third pairing connection with the third electronic device according to a determination result between the first electronic device and the third electronic device; and terminating the first pairing connection and retrieving the sensor data from the second electronic device through the third electronic device by the first electronic device when the third pairing connection has been built.
Abstract:
A method for accessing a network in an electronic system and associated portable device are provided. The portable device includes; a transceiver, supporting a plurality of predetermined communication protocols; and a processor, configured to connect the portable device to a connectivity service device in an electronic system via the transceiver when the portable device enters a coverage region of the connectivity service device. The connectivity service device retrieves service information from a plurality of electronic devices that are connected to the connectivity service device, to build a service list. The processor retrieves the service list from the connectivity service device, and determines a service from the service list to be used for communicating with the plurality of the electronic devices.
Abstract:
A low-power wearable controller and associated control method are provided. The wearable controller includes: a processing unit; a memory unit; a peripheral interface unit including a plurality of peripheral interfaces; and a control module, coupled to the processing unit, the memory unit and the peripheral interface unit, wherein the control module is enabled when the wearable controller is operated in a first operation mode, and the control module is disabled when the wearable controller is operated in a second operation mode.
Abstract:
A mobile communication device including a positioning unit and a processing unit is provided. The processing unit provides position information of the mobile communication device. The processing unit detects an approach to a first geofence according to one or more contexts associated with the mobile communication device, turns off the positioning unit when not detecting the approach to the first geofence, and turns on the positioning unit when detecting the approach to the first geofence.
Abstract:
A wearable device includes a plurality of sensors, a wireless communication unit and a control unit. The wireless communication unit is arranged for communicating with an electronic device having a plurality of sensors. The control unit is arranged for receiving at least one sensed data from the electronic device via the wireless communication unit, and comparing the at least one sensed data of the electronic device with sensed data generated by at least one of the sensors of the wearable device to generate a comparison result, and determining whether the electronic device is in a aware status according to the comparison result.