摘要:
A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.
摘要:
An integrated intelligent system includes a first intelligent electronic device, a second intelligent electronic device, a transferable intelligent control device (TICD) and a cross product bus. The first intelligent electronic device performs a first function and the second intelligent electronic device performs a second function. The cross product bus couples the first intelligent electronic device to the transferable intelligent control device. The TICD partially controls behaviors of the intelligent electronic device by sending commands over the cross product bus to the first intelligent electronic device and the TICD partially controls behaviors of the second intelligent electronic device to perform the second function. The TICD is first attached to the first intelligent electronic device to partially control the behaviors of the first electronic device, then detached from the first electronic device, and then attached to the second intelligent electronic device to perform the second function.
摘要:
A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.
摘要:
The invention is generally related to the estimation of position and orientation of an object with respect to a local or a global coordinate system using reflected light sources. A typical application of the method and apparatus includes estimation and tracking of the position of a mobile autonomous robot. Other applications include estimation and tracking of an object for position-aware, ubiquitous devices. Additional applications include tracking of the positions of people or pets in an indoor environment. The methods and apparatus comprise one or more optical emitters, one or more optical sensors, signal processing circuitry, and signal processing methods to determine the position and orientation of at least one of the optical sensors based at least in part on the detection of the signal of one or more emitted light sources reflected from a surface.
摘要:
Methods and apparatus that provide a hardware abstraction layer (HAL) for a robot are disclosed. A HAL can reside as a software layer or as a firmware layer residing between robot control software and underlying robot hardware and/or an operating system for the hardware. The HAL provides a relatively uniform abstract for aggregates of underlying hardware such that the underlying robotic hardware is transparent to perception and control software, i.e., robot control software. This advantageously permits robot control software to be written in a robot-independent manner. Developers of robot control software are then freed from tedious lower level tasks. Portability is another advantage. For example, the HAL efficiently permits robot control software developed for one robot to be ported to another. In one example, the HAL permits the same navigation algorithm to be ported from a wheeled robot and used on a humanoid legged robot.
摘要:
Media and gesture recognition apparatus and methods are disclosed. A computerized system views a first printed media using an electronic visual sensor. The system retrieves information corresponding to the viewed printed media from a database. Using the electronic visual sensor, the system views at least a first user gesture relative to at least a portion of the first printed media. The system interprets the gesture as a command, and based at least in part on the first gesture and the retrieved information, the system electronically speaks aloud at least a portion of the retrieved information.
摘要:
Methods and apparatus that provide a hardware abstraction layer (HAL) for a robot are disclosed. A HAL can reside as a software layer or as a firmware layer residing between robot control software and underlying robot hardware and/or an operating system for the hardware. The HAL provides a relatively uniform abstract for aggregates of underlying hardware such that the underlying robotic hardware is transparent to perception and control software, i.e., robot control software. This advantageously permits robot control software to be written in a robot-independent manner. Developers of robot control software are then freed from tedious lower level tasks. Portability is another advantage. For example, the HAL efficiently permits robot control software developed for one robot to be ported to another. In one example, the HAL permits the same navigation algorithm to be ported from a wheeled robot and used on a humanoid legged robot.
摘要:
Methods and apparatus that provide a hardware abstraction layer (HAL) for a robot are disclosed. A HAL can reside as a software layer or as a firmware layer residing between robot control software and underlying robot hardware and/or an operating system for the hardware. The HAL provides a relatively uniform abstract for aggregates of underlying hardware such that the underlying robotic hardware is transparent to perception and control software, i.e., robot control software. This advantageously permits robot control software to be written in a robot-independent manner. Developers of robot control software are then freed from tedious lower level tasks. Portability is another advantage. For example, the HAL efficiently permits robot control software developed for one robot to be ported to another. In one example, the HAL permits the same navigation algorithm to be ported from a wheeled robot and used on a humanoid legged robot.
摘要:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.