摘要:
In a current steering D/A converter, a 1LSB current source 1 and a 2LSB current source 2 are binary code current sources for outputting currents with current values weighted by ½, and a 4LSB current source 3 is one of a large number of current sources designed as thermometer code current source with the same structure. In first circuits A1, A2 and A4 for respectively determining constant current values of the current sources 1 through 3, a plurality of MOS transistors with a channel length L3 and a channel width W3 are cascode-connected to one another with gate terminals thereof shared. In second circuits B1, B2 and B4 respectively used for setting high output impedance of the current sources 1 through 3, a plurality of MOS transistors with a channel length L4 and a channel width W4 are cascode-connected to one another with gate terminals thereof shared. Accordingly, the current characteristics of the current sources can be made more uniform while reducing their circuit areas, resulting in improving the linearity of the D/A conversion characteristic.
摘要:
A D/A converter has a plurality of current sources (IS1, IS2, IS3-1 to IS3-63) including transistors and selects, according to a given digital signal, paths of the currents output from the current sources (IS1, IS2, IS3-1 to IS3-63), thereby converting the digital signal to an analog signal. In the D/A converter, a forward body bias voltage is applied to the back gate terminals of the transistors constituting each of the current sources (IS1, IS2, IS3-1 to IS3-63).
摘要:
In a current steering D/A converter, a 1LSB current source 1 and a 2LSB current source 2 are binary code current sources for outputting currents with current values weighted by ½, and a 4LSB current source 3 is one of a large number of current sources designed as thermometer code current source with the same structure. In first circuits A1, A2 and A4 for respectively determining constant current values of the current sources 1 through 3, a plurality of MOS transistors with a channel length L3 and a channel width W3 are cascode-connected to one another with gate terminals thereof shared. In second circuits B1, B2 and B4 respectively used for setting high output impedance of the current sources 1 through 3, a plurality of MOS transistors with a channel length L4 and a channel width W4 are cascode-connected to one another with gate terminals thereof shared. Accordingly, the current characteristics of the current sources can be made more uniform while reducing their circuit areas, resulting in improving the linearity of the D/A conversion characteristic.
摘要:
When the performance of an A/D converter required by a system changes, power consumption of the overall system can be reduced. The resolution of an A/D converter is made variable by changing a current flowing through an amplifier by an external control signal that specifies the resolution. Thus, when the performance required by a system changes, it is possible to change the performance of the A/D converter and to prevent a performance overhead of the A/D converter. Consequently, power consumption of the A/D converter is reduced, and power consumption of the system as a whole is also reduced.
摘要:
In order to reduce power consumption, a power supply for a digital circuit portion is shut off, so that the output voltage of the power supply becomes the zero level. A CMOS (complementary metal oxide semiconductor) inverter has a P-channel FET (field effect transistor) with a gate electrode formed of P-type polysilicon. A source electrode of the P-channel FET is connected to the power supply and a back gate electrode of the P-channel FET is in direct connection with the aforesaid source electrode. The P-channel FET is placed in a state of not functioning as a transistor when the power supply is shut off in a low power consumption mode. However, in order to prevent the P-channel FET from undergoing characteristic degradation in that mode, there is the provision of a pull-down switch capable of fixing, in the mode, the voltage of the gate electrode of the P-channel FET at the zero level.