Abstract:
A standard voltage generation circuit is provided with a function of automatically stopping charging when a standard voltage reaches a stable voltage point by rapidly charging a standard voltage stabilization capacitor during transition from a standby state to a normal operation state. The standard voltage generation circuit is also provided with a function of precharging an output terminal of the circuit to a voltage close to the stable voltage by a potential division effect of the capacitor during transition from the standby state to the normal operation state. Thereby, it is possible to prevent an increase in the amount of time that is required until the standard voltage reaches the stable voltage when the state of an analog circuit included in the standard voltage generation circuit changes from its off state to its on state.
Abstract:
A standard voltage generation circuit is provided with a function of automatically stopping charging when a standard voltage reaches a stable voltage point by rapidly charging a standard voltage stabilization capacitor during transition from a standby state to a normal operation state. The standard voltage generation circuit is also provided with a function of precharging an output terminal of the circuit to a voltage close to the stable voltage by a potential division effect of the capacitor during transition from the standby state to the normal operation state. Thereby, it is possible to prevent an increase in the amount of time that is required until the standard voltage reaches the stable voltage when the state of an analog circuit included in the standard voltage generation circuit changes from its off state to its on state.
Abstract:
As shown in FIG. 1, a gate terminal of a MOS transistor or an input terminal of a logic gate, which are included in a through current detection target net list, are extracted, and a resistor is inserted between the gate terminal of the MOS transistor or the input terminal of the logic gate and a power supply, and between the gate terminal of the MOS transistor or the input terminal of the logic gate and a reference voltage, respectively, thereby to perform net list conversion, and thereafter, DC analysis is executed. Therefore, a MOS transistor in which through current might occur can be detected, leading to reliable detection of through current that cannot be easily detected by the conventional DC analysis simulation, and reliable detection of a transistor in which through current might occur, in the through current detection target circuit.
Abstract:
When the performance of an A/D converter required by a system changes, power consumption of the overall system can be reduced. The resolution of an A/D converter is made variable by changing a current flowing through an amplifier by an external control signal that specifies the resolution. Thus, when the performance required by a system changes, it is possible to change the performance of the A/D converter and to prevent a performance overhead of the A/D converter. Consequently, power consumption of the A/D converter is reduced, and power consumption of the system as a whole is also reduced.
Abstract:
A standard voltage generation circuit is provided with a function of automatically stopping charging when a standard voltage reaches a stable voltage point by rapidly charging a standard voltage stabilization capacitor during transition from a standby state to a normal operation state. The standard voltage generation circuit is also provided with a function of precharging an output terminal of the circuit to a voltage close to the stable voltage by a potential division effect of the capacitor during transition from the standby state to the normal operation state. Thereby, it is possible to prevent an increase in the amount of time that is required until the standard voltage reaches the stable voltage when the state of an analog circuit included in the standard voltage generation circuit changes from its off state to its on state.
Abstract:
In a transport apparatus, a plurality of flat bodies are respectively aligned uprightly and juxtaposed laterally to form a block of the flat bodies, the block is loaded in a movable capsule, and the capsule is transported under the application of air flow through a transport pipeline. A loading mechanism having a pair of openable and closable holding arms is disposed to oppose a loading opening of a loading station, and an unloading mechanism having a pair of openable and closable holding arms is disposed to oppose an unloading opening of an unloading station.
Abstract:
A parallel interpolation A/D converter includes a reference voltage generation circuit configured to generate (m+1) different reference voltages VR1-VRm+1, where m is a positive integer, and VR1
Abstract:
A plurality of analog signals are input to input terminals of an analog signal processing circuit ANA2 via respective capacitors C. In a bias circuit Bias for supplying a bias voltage such as a signal ground of the analog signals to the analog signal processing circuit ANA2, in an operational amplifier OpAS, a bias voltage VIr is input from a non-inverting input VIP of a built-in differentiate amplifier circuit, an output terminal of the built-in output amplifier circuit OA1 is connected to an inverting input terminal VIM of the differentiate amplifier circuit DA, and thereby a voltage follower is obtained. Furthermore, a plurality of output amplifier circuits OA2 through OAn are provided so that input terminals thereof are connected to output terminals of the differential amplifier circuit DA, and the output terminals are connected to input terminals IN1 through INn of the analog signal processing circuit ANA2.
Abstract:
A plurality of analog signals are input to input terminals of an analog signal processing circuit ANA2 via respective capacitors C. In a bias circuit Bias for supplying a bias voltage such as a signal ground of the analog signals to the analog signal processing circuit ANA2, in an operational amplifier OpAS, a bias voltage VIr is input from a non-inverting input VIP of a built-in differentiate amplifier circuit, an output terminal of the built-in output amplifier circuit OA1 is connected to an inverting input terminal VIM of the differentiate amplifier circuit DA, and thereby a voltage follower is obtained. Furthermore, a plurality of output amplifier circuits OA2 through OAn are provided so that input terminals thereof are connected to output terminals of the differential amplifier circuit DA, and the output terminals are connected to input terminals IN1 through INn of the analog signal processing circuit ANA2.
Abstract:
A full-flash A/D converter, including a differential amplifier circuit row and a voltage comparison circuit row, has an adjusting circuit 107 for making the output dynamic range of differential amplifier circuits accurately fall within the input dynamic range of voltage comparison circuits. The adjusting circuit 107 includes a reference voltage generation circuit 119, which has therein voltage generation circuits 122 whose resistors are connected in series. By this series connection, the area of the voltage generation circuits 122 is reduced, while the output dynamic range of the differential amplifier circuits A1 to Am+1 in the differential amplifier circuit row 102 accurately falls within the input dynamic range of the voltage comparison circuits Cr1 to Crm+1 in the voltage comparison circuit row 103. Furthermore, half-circuits in the voltage generation circuits 122 are used to generate reference voltages, whereby the area of the voltage generation circuits is reduced further.