Abstract:
A user equipment (UE) in a cellular telecommunications system is able to detect the uplink/downlink configuration of a detected neighboring cell by receiving a signal from the neighboring cell. A characteristic of the received signal is detected and used as an indicator in a blind detection process to identify one or more downlink slots in the received signal. Known pilot signals in the identified one or more downlink slots can then be used to obtain a signal power measurement of the received signal. The blind detection process is also capable of detecting whether a slot of a neighboring cell's signal is a downlink unicast slot or a Multicast-Broadcast Single Frequency Network slot.
Abstract:
A first base station (14) in a wireless communication system (10) operating according to a synchronised time division duplex scheme comprises an antenna (24), a radio communication unit (26) and an interference handling module (28). The interference handling module comprises an interference investigating unit (30) and a transmission control unit (34) configured to provide a sounding frame in which a variable downlink time interval has a pre-defined size long enough to provoke interference, order the interference investigating unit to obtain and analyse a link quality data parameter in a non-downlink time interval and determine whether interference from another base station is present. The transmission control unit is further configured to order the radio communication unit (26) to reduce the size of following variable downlink time intervals according to an interference reduction scheme for obtaining time intervals with a guaranteed reduced size if interference from another base station is present.
Abstract:
A method and a network node (110, 111) for determining first channel state information in an upcoming time slot for use by a first radio network node (111) when determining a set of radio transmission parameters for a transmission between the first radio network node (111) and a second radio network node (121) are provided. The net work node (110, 111) receives (201) second channel state information for said upcoming time slot. Furthermore, the network node (110, 111) determines (207) third channel state information for said upcoming time slot. The second and third channel state information are at least partly non-overlapping with each other. Next, the network node (110, 111) determines (208) the first channel state information, for said upcoming time slot, based on the second channel state information and the third channel state information.
Abstract:
The invention relates to methods and communication devices for transmitting data on a radio channel comprising the steps of determining a first preamble format to be used in a cell of the second communication device, determining a basic cyclic shift value from a set of basic cyclic shift values, the set is selected based on the preamble format, and transmitting data comprising indication of the determined first preamble format and a basic cyclic shift value pointer indicating the basic cyclic shift value in the set of basic cyclic shift values.
Abstract:
Method in a user equipment (120), a user equipment (120), a method in a base station (110) and a base station (110) for setting values of system parameters used within a wireless communication system (100). A first set of parameter values and an associated first tag is sent from the base station (110) to be received and stored by the user equipment (120). Further, a second set of parameter values and an associated second tag is sent from the base station (110) to be received and stored by the user equipment (120). When the base station (110) determine to change system information parameters, a command tag is sent, to be received by the user equipment (120), which apply the set of parameter values associated with the tag corresponding to the received command tag.
Abstract:
The invention discloses a beamforming method for polarized antenna array consisting of a plurality of antenna elements, applied to single layer beamforming or dual layer beamforming, which includes the steps: determining (201) first beamforming weights for phase compensation among the antenna elements within each polarization direction; determining (202) second beamforming weights for phase compensation between equivalent channels of two polarization directions; and calculating (203) hybrid beamforming weights as product of the first beamforming weights and the second beamforming weights. A beamforming apparatus for polarized antenna array is also provided in the invention as well as a radio communication device and a system thereof. With the invention, the single-layer and dual-layer beamforming weights are determined for the cross-polarized antenna array without requiring full channel knowledge or the aid of PMI. Computation complexity is lowered and full power amplifier utilization can be achieved.
Abstract:
The present invention provides a unified, rank independent mapping between antenna ports and group/code pairs. Each antenna port is uniquely associated with one code division multiplexing (CDM) group and one orthogonal cover code (OCC). The mapping between antenna ports and group/code pairs is chosen such that, for a given antenna port, the CDM group and OCC will be the same for every transmission rank.
Abstract:
A method performed in a wireless network includes receiving signals within a downlink frequency domain to enable channel estimation and measuring two or more signals only for two or more frequency bands of the downlink frequency domain that correspond to two or more uplink frequency bands associated with a scheduling grant or channel allocation that correspond to physical uplink channel frequency bands. The method also includes calculating path loss values for each of the frequency bands and calculating a total power based on the path loss values corresponding to the frequency bands. The method further includes determining a power allocation per frequency band based on the calculated total power to be applied to an uplink transmission and allocating the total power.
Abstract:
Method and arrangement in a base station for sending data to a user equipment. The base station comprises an instance of a codebook, corresponding to another instance of the codebook comprised in the user equipment. The method comprises obtaining channel state information from a signal received from the user equipment, estimating a channel to be used for transmitting data to the user equipment, calculating a precoder, based on the obtained channel state information. Further is comprised the steps of selecting a precoding index from the codebook based on the calculated precoder, or selecting a precoding index received from the user equipment, precoding data to be transmitted to the user equipment using the calculated precoder and transmitting the precoded data, a non-user dedicated reference signal and the precoding index on the estimated channel to the user equipment. Further, corresponding method and arrangement in a user equipment are described.
Abstract:
A method for facilitating noise and interference measurements on an air interface of a wireless network includes obtaining information relating to a time-varying layout of a silent resource element (RE) grid and taking a presence of a silent RE grid into account in the reception of a control or a data channel.