-
31.
公开(公告)号:US11531088B2
公开(公告)日:2022-12-20
申请号:US16836618
申请日:2020-03-31
Applicant: NVIDIA Corporation
Inventor: Alexander Popov , Nikolai Smolyanskiy , Ryan Oldja , Shane Murray , Tilman Wekel , David Nister , Joachim Pehserl , Ruchi Bhargava , Sangmin Oh
Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.
-
公开(公告)号:US20220341750A1
公开(公告)日:2022-10-27
申请号:US17726416
申请日:2022-04-21
Applicant: NVIDIA Corporation
Inventor: Amir Akbarzadeh , Ruchi Bhargava , Vaibhav Thukral
Abstract: In various examples, health of a high definition (HD) map may be monitored to determine whether inaccuracies exist in one or more layers of the HD map. For example, as one or more vehicles rely on the HD map to traverse portions of an environment, disagreements between perception of the one or more vehicles, map layers of the HD map, and/or other disagreement types may be identified and aggregated. Where errors are identified that indicate a drop in health of the HD map, updated data may be crowdsourced from one or more vehicles corresponding to a location of disagreement within the HD map, and the updated data may be used to update, verify, and validate the HD map.
-
公开(公告)号:US11474519B2
公开(公告)日:2022-10-18
申请号:US16286330
申请日:2019-02-26
Applicant: NVIDIA Corporation
Inventor: Gary Hicok , Michael Cox , Miguel Sainz , Martin Hempel , Ratin Kumar , Timo Roman , Gordon Grigor , David Nister , Justin Ebert , Chin Shih , Tony Tam , Ruchi Bhargava
Abstract: A system and method for an on-demand shuttle, bus, or taxi service able to operate on private and public roads provides situational awareness and confidence displays. The shuttle may include ISO 26262 Level 4 or Level 5 functionality and can vary the route dynamically on-demand, and/or follow a predefined route or virtual rail. The shuttle is able to stop at any predetermined station along the route. The system allows passengers to request rides and interact with the system via a variety of interfaces, including without limitation a mobile device, desktop computer, or kiosks. Each shuttle preferably includes an in-vehicle controller, which preferably is an AI Supercomputer designed and optimized for autonomous vehicle functionality, with computer vision, deep learning, and real time ray tracing accelerators. An AI Dispatcher performs AI simulations to optimize system performance according to operator-specified system parameters.
-
公开(公告)号:US20210342608A1
公开(公告)日:2021-11-04
申请号:US17377053
申请日:2021-07-15
Applicant: NVIDIA Corporation
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
35.
公开(公告)号:US20210295171A1
公开(公告)日:2021-09-23
申请号:US16824199
申请日:2020-03-19
Applicant: NVIDIA Corporation
Inventor: Alexey Kamenev , Nikolai Smolyanskiy , Ishwar Kulkarni , Ollin Boer Bohan , Fangkai Yang , Alperen Degirmenci , Ruchi Bhargava , Urs Muller , David Nister , Rotem Aviv
Abstract: In various examples, past location information corresponding to actors in an environment and map information may be applied to a deep neural network (DNN)—such as a recurrent neural network (RNN)—trained to compute information corresponding to future trajectories of the actors. The output of the DNN may include, for each future time slice the DNN is trained to predict, a confidence map representing a confidence for each pixel that an actor is present and a vector field representing locations of actors in confidence maps for prior time slices. The vector fields may thus be used to track an object through confidence maps for each future time slice to generate a predicted future trajectory for each actor. The predicted future trajectories, in addition to tracked past trajectories, may be used to generate full trajectories for the actors that may aid an ego-vehicle in navigating the environment.
-
36.
公开(公告)号:US20210156960A1
公开(公告)日:2021-05-27
申请号:US16836583
申请日:2020-03-31
Applicant: NVIDIA Corporation
Inventor: Alexander Popov , Nikolai Smolyanskiy , Ryan Oldja , Shane Murray , Tilman Wekel , David Nister , Joachim Pehserl , Ruchi Bhargava , Sangmin Oh
IPC: G01S7/41 , G06N3/08 , G06T7/73 , G06T7/246 , G01S13/931
Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space, in both highway and urban scenarios. RADAR detections may be accumulated, ego-motion-compensated, orthographically projected, and fed into a neural network(s). The neural network(s) may include a common trunk with a feature extractor and several heads that predict different outputs such as a class confidence head that predicts a confidence map and an instance regression head that predicts object instance data for detected objects. The outputs may be decoded, filtered, and/or clustered to form bounding shapes identifying the location, size, and/or orientation of detected object instances. The detected object instances may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
-
-
-
-