摘要:
A mechanism is provided for scheduling application tasks. A scheduler receives a task that identifies a desired frequency and a desired maximum number of competing hardware threads. The scheduler determines whether a user preference designates either maximization of performance or minimization of energy consumption. Responsive to the user preference designating the performance, the scheduler determines whether there is an idle processor core in a plurality of processor cores available. Responsive to no idle processor being available, the scheduler identifies a subset of processor cores having a smallest load coefficient. From the subset of processor cores, the scheduler determines whether there is at least one processor core that matches desired parameters of the task. Responsive to at least one processor core matching the desired parameters of the task, the scheduler assigns the task to one of the at least one processor core that matches the desired parameters.
摘要:
A mechanism is provided for scheduling application tasks. A scheduler receives a task that identifies a desired frequency and a desired maximum number of competing hardware threads. The scheduler determines whether a user preference designates either maximization of performance or minimization of energy consumption. Responsive to the user preference designating the performance, the scheduler determines whether there is an idle processor core in a plurality of processor cores available. Responsive to no idle processor being available, the scheduler identifies a subset of processor cores having a smallest load coefficient. From the subset of processor cores, the scheduler determines whether there is at least one processor core that matches desired parameters of the task. Responsive to at least one processor core matching the desired parameters of the task, the scheduler assigns the task to one of the at least one processor core that matches the desired parameters.
摘要:
Methods, computers, and products for managing power consumption of a computer, the computer including a computer processor and managing power consumption of a computer includes: dynamically during operation of the computer, setting, by an in-band power manager in dependence upon performance metrics of the computer processor, a current performance state (‘p-state’) of the computer processor; and providing, by the in-band power manager to an out-of-band power manager, the current p-state of the computer processor.
摘要:
Disclosed is a computer implemented method, computer program product, and apparatus for determining a safe lower bound for a commonly powered data processing system. A power management module operates the data processing system using at least one nominal operating parameter during an exploration periodicity, with the at least one nominal operating parameter being clock speed. The power management module determines whether a calibration period is occurring. The power management module calibrates the data processing system up to a measurement interval duration expiration. The power management module may repeat operating the data processing system using the at least one nominal operating parameter.
摘要:
Methods and products for managing power consumption of a computer and computers for which power consumption is managed. The computer includes the computer including a computer processor and embodiments of the present invention include providing, by an in-band power manger to an out-of-band power manager, a proposed performance state (‘p-state’) for the computer processor; determining, by the out-of-band power manager, in dependence upon a power setpoint and currently-measured operating metrics of the computer processor, whether to approve the proposed p-state; and if the out-of-band power manager approves the proposed p-state, setting operating parameters of the computer processor according to the approved p-state.
摘要:
Methods, computers, and products for managing power consumption of a computer, the computer including a computer processor and managing power consumption of a computer includes: dynamically during operation of the computer, setting, by an in-band power manager in dependence upon performance metrics of the computer processor, a current performance state (‘p-state’) of the computer processor; and providing, by the in-band power manager to an out-of-band power manager, the current p-state of the computer processor.
摘要:
A mechanism is provided for dynamically power capping one or more units. A power capping mechanism sets a counter value corresponding to an initial energy budget assigned to a unit for a given interval. Responsive to the unit receiving an operation to perform during the given interval, the power capping mechanism decrements the counter value by a decrement value. Responsive to the given interval expiring, the power capping mechanism sends the counter value to a power control loop in the data processing system, receives a new energy budget from the power control loop, and resets the counter value to a value corresponding to the new energy budget assigned to the unit for a next interval.
摘要:
A mechanism is provided for oversubscribing branch circuits. An active energy management mechanism determines a cumulative wattage rating using power consumption information for a powered element, the power consumption information is for a primary and a redundant portion of the powered element. The active energy management mechanism determines a power reduction power cap to be used by the powered element in the event of a loss of either a primary or a redundant power source supplied to the powered element using the cumulative wattage rating, a branch circuit rating, and a circuit breaker rating for the powered element. The active energy management mechanism sends the power reduction power cap to the powered element in order that the powered element reduces power to the power reduction power cap in the event of the loss of either the primary power source or the redundant power source supplied to the powered element.
摘要:
A mechanism is provided for oversubscribing branch circuits. An active energy management mechanism determines a cumulative wattage rating using power consumption information for a powered element, the power consumption information is for a primary and a redundant portion of the powered element. The active energy management mechanism determines a power reduction power cap to be used by the powered element in the event of a loss of either a primary or a redundant power source supplied to the powered element using the cumulative wattage rating, a branch circuit rating, and a circuit breaker rating for the powered element. The active energy management mechanism sends the power reduction power cap to the powered element in order that the powered element reduces power to the power reduction power cap in the event of the loss of either the primary power source or the redundant power source supplied to the powered element.
摘要:
A mechanism is provided for oversubscribing branch circuits. An active energy management mechanism determines a cumulative wattage rating using power consumption information for a powered element, the power consumption information is for a primary and a redundant portion of the powered element. The active energy management mechanism determines a power reduction power cap to be used by the powered element in the event of a loss of either a primary or a redundant power source supplied to the powered element using the cumulative wattage rating, a branch circuit rating, and a circuit breaker rating for the powered element. The active energy management mechanism sends the power reduction power cap to the powered element in order that the powered element reduces power to the power reduction power cap in the event of the loss of either the primary power source or the redundant power source supplied to the powered element.