摘要:
A mechanism is provided for oversubscribing branch circuits. An active energy management mechanism determines a cumulative wattage rating using power consumption information for a powered element, the power consumption information is for a primary and a redundant portion of the powered element. The active energy management mechanism determines a power reduction power cap to be used by the powered element in the event of a loss of either a primary or a redundant power source supplied to the powered element using the cumulative wattage rating, a branch circuit rating, and a circuit breaker rating for the powered element. The active energy management mechanism sends the power reduction power cap to the powered element in order that the powered element reduces power to the power reduction power cap in the event of the loss of either the primary power source or the redundant power source supplied to the powered element.
摘要:
A mechanism is provided for oversubscribing branch circuits. An active energy management mechanism determines a cumulative wattage rating using power consumption information for a powered element, the power consumption information is for a primary and a redundant portion of the powered element. The active energy management mechanism determines a power reduction power cap to be used by the powered element in the event of a loss of either a primary or a redundant power source supplied to the powered element using the cumulative wattage rating, a branch circuit rating, and a circuit breaker rating for the powered element. The active energy management mechanism sends the power reduction power cap to the powered element in order that the powered element reduces power to the power reduction power cap in the event of the loss of either the primary power source or the redundant power source supplied to the powered element.
摘要:
A mechanism is provided for oversubscribing branch circuits. An active energy management mechanism determines a cumulative wattage rating using power consumption information for a powered element, the power consumption information is for a primary and a redundant portion of the powered element. The active energy management mechanism determines a power reduction power cap to be used by the powered element in the event of a loss of either a primary or a redundant power source supplied to the powered element using the cumulative wattage rating, a branch circuit rating, and a circuit breaker rating for the powered element. The active energy management mechanism sends the power reduction power cap to the powered element in order that the powered element reduces power to the power reduction power cap in the event of the loss of either the primary power source or the redundant power source supplied to the powered element.
摘要:
A mechanism is provided for oversubscribing branch circuits. An active energy management mechanism determines a cumulative wattage rating using power consumption information for a powered element, the power consumption information is for a primary and a redundant portion of the powered element. The active energy management mechanism determines a power reduction power cap to be used by the powered element in the event of a loss of either a primary or a redundant power source supplied to the powered element using the cumulative wattage rating, a branch circuit rating, and a circuit breaker rating for the powered element. The active energy management mechanism sends the power reduction power cap to the powered element in order that the powered element reduces power to the power reduction power cap in the event of the loss of either the primary power source or the redundant power source supplied to the powered element.
摘要:
A method and system for providing performance estimations for a specified power budget provides an indication of the impact on processing performance when closed-loop power/performance control is employed to meet the specified power budget. A workload, which may be the actual workload, or a test workload is run to determine actual power consumption at intervals during the execution of the workload. The power values are examined and if they exceed the specified budget, which may be one of multiple possible budget values, an estimate of the amount by and duration for which the closed-loop power/performance control would have to reduce the performance of the system for each interval in order to provide an estimate of actual performance for the budgetary level(s). The estimate is informed by tests of the workload at each power/performance level to provide a non-linear estimate of the relationship between performance and power for the particular workload.
摘要:
A modular processing module is provided. The modular processing module comprises a set of processing module sides. Each processing module side comprises a circuit board, a plurality of connectors coupled to the circuit board, and a plurality of processing nodes coupled to the circuit board. Each processing module side in the set of processing module sides couples to another processing module side using at least one connector in the plurality of connectors such that, when all of the set of processing module sides are coupled together, the modular processing module is formed. The modular processing module comprises an exterior connection to a power source and a communication system.
摘要:
A modular processing module is provided. The modular processing module comprises a set of processing module sides. Each processing module side comprises a circuit board, a plurality of connectors coupled to the circuit board, and a plurality of processing nodes coupled to the circuit board. Each processing module side in the set of processing module sides couples to another processing module side using at least one connector in the plurality of connectors such that, when all of the set of processing module sides are coupled together, the modular processing module is formed. The modular processing module comprises an exterior connection to a power source and a communication system.
摘要:
Disclosed are systems, methods, and computer program products for managing power states in processors of a data processing system. In one embodiment, the invention is directed to a data processing system having dynamically configurable power-performance states (“pstates”). The data processing system includes a processor configured to operate at multiple states of frequency and voltage. The data processing system also has a power manager module configured to monitor operation of the data processing system. The data processing system further includes a pstates table having a plurality of pstate definitions, wherein each pstate definition includes a voltage value, a frequency value, and at least one unique pointer that indicates a transition from a given pstate to a different pstate. The voltage value, frequency value, and unique pointer of a given pstate definition are configurable, during operation of the data processing system, by the power manager module in response to changes in the operating parameters of the data processing system.
摘要:
Managing operations associated with one or more voltage changes and one or more frequency changes. A voltage change request and a frequency change request are associated with dynamic voltage and frequency scaling (DVFS) operations. The DVFS operations are transmitted by the processors to be executed by one or more direct current assemblies. A sequence associated with the one or more voltage changes and a sequence associated with the one or more frequency changes are detected by the system. The sequences are dynamically modified to enable insertion of an additional voltage change, whereby the additional voltage change indicates completion of one or more previous voltage change requests. Completion of the voltage change request enables one or more subsequent voltage change requests to be processed. When a voltage change request is not successfully completed one or more future voltage changes are suspended.
摘要:
A mechanism is provided for unified management of power, performance, and thermals in computer systems. This mechanism incorporates elements to effectively address all aspects of managing computing systems in an integrated manner, instead of independently. The mechanism employs an infrastructure for real-time measurements feedback, an infrastructure for regulating system activity, component operating levels, and environmental control, a dedicated control structure for guaranteed response/preemptive action, and interaction and integration components. The mechanism provides interfaces for user-level interaction. The mechanism also employs methods to address power/thermal concerns at multiple timescales. In addition, the mechanism improves efficiency by adopting an integrated approach, rather than treating different aspects of the power/thermal problem as individual issues to be addressed in a piecemeal fashion.