Abstract:
In a multi-processor system, an executable software image including an image header and a segmented data image is scatter loaded from a first processor to a second processor. The image header contains the target locations for the data image segments to be scatter loaded into memory of the second processor. Once the image header has been processed, the data segments may be directly loaded into the memory of the second processor without further CPU involvement from the second processor.
Abstract:
A system for receiving redirected electronic media playback includes a proxy configured to communicate with a remote access module. The remote access module is configured to establish a remote access connection between the system and a remote system. The proxy is configured to receive, over the remote access connection, a decode request for electronic media content designated for a local multimedia application on the system, and in return, provide a result for the request. The proxy is also configured to receive at least one playback command designated for playing the electronic media content on the local multimedia application. The electronic media appears to be playing on a remote multimedia application on the remote system corresponding to the local multimedia application, but is played on the local multimedia application. A system for redirecting playback of electronic media content to a remote system, methods, and machine-readable media are also provided.
Abstract:
A transmitter having at least one channel comprising a first differential circuit driven by a differential data signal, the first differential circuit configured to output the differential data at a first and second output and a first control circuit coupled between the first differential circuit and the first and second output, the first control circuit driven by a drive voltage.
Abstract:
The present invention relates to a hydroxyalkyl starch conjugate and a method for preparing the same, said hydroxy-yalkyl starch conjugate comprising a hydroxyalkyl starch derivative and a cytotoxic agent, the cytotoxic agent comprising at least one secondary hydroxyl group, wherein the hydroxyalkyl starch is linked via said secondary hydroxyl group to the cytotoxic agent. The conjugate according to the present invention has a structure according to the following formula HAS′(-L-M)n wherein M is a residue of the cytotoxic agent, L is a linking moiety, HAS′ is the residue of the hydroxyalkyl starch derivative, and n is greater than or equal to 1, and wherein the hydroxyalkyl starch derivative has a mean molecular weight (MW) above the renal threshold.
Abstract:
Association information is used to build association trees to associate base pages and embedded objects at a proxy. An association tree has a root node containing a URL for a base page, and zero or more leaf nodes each containing a URL for an embedded object. In most cases, an association tree will maintain the invariant that all leaves contain distinct URLs. However, it is also possible to have an association tree in which the same URL appears in multiple nodes. An association tree may optionally contain one or more internal nodes, each of which contains a URL that is an embedded object for some other base page, but which may also be fetched as a base page itself. Given a number of association trees and a base-page URL, a prefetch system finds the root or interior node corresponding to that URL (if any) and traverses the tree from that node, prefetching URLs until the URL of the last leaf node is prefetched. The prefetching starts the process of bringing over the various embedded objects before the user or program would ordinarily fetch them.
Abstract:
The present invention relates to hydroxyalkyl starch conjugates and a method for preparing the same, the hydroxyalkyl starch conjugate comprising a hydroxyalkyl starch derivative and a cytotoxic agent, the cytotoxic agent comprising at least one primary hydroxyl group, wherein the hydroxyalkyl starch is linked via said primary hydroxyl group to the cytotoxic agent. The conjugates according to the present invention have a structure according to the following formula HAS′(-L-M)n wherein M is a residue of the cytotoxic agent, L is a linking moiety, HAS′ is the residue of the hydroxyalkyl starch derivative, and n is greater than or equal to 1, and wherein the hydroxyalkyl starch derivative has a mean molecular weight (MW) above the renal threshold and a molar substitution (MS) in the range of from 0.6 to 1.5.
Abstract:
The present invention relates to a hydroxyalkyl starch conjugate and a method for preparing the same, said hydroxy-yalkyl starch conjugate comprising a hydroxyalkyl starch derivative and a cytotoxic agent, the cytotoxic agent comprising at least one secondary hydroxyl group, wherein the hydroxyalkyl starch is linked via said secondary hydroxyl group to the cytotoxic agent. The conjugate according to the present invention has a structure according to the following formula HAS′(-L-M)n wherein M is a residue of the cytotoxic agent, L is a linking moiety, HAS′ is the residue of the hydroxyalkyl starch derivative, and n is greater than or equal to 1, and wherein the hydroxyalkyl starch derivative has a mean molecular weight (MW) above the renal threshold.
Abstract:
A mobile station in a wireless network includes a roaming timer. The roaming timer is set based on various criteria, and when the roaming timer expires, an attempt to roam is performed.
Abstract:
Methods, systems, and apparatus provide efficient and flexible networking quality of service as well as transport protocol design. A hybrid transport/network quality of service (HTNQ) scheme improves the performance of TCP over specific links or network paths that are subject to high latency, a high bandwidth-delay product, high packet loss, and/or bit errors. A callback mechanism can be used between a packet scheduler and a transport module to control the transmission rate of packets across one or more connections or links.
Abstract:
Transparent network devices intercept messages from non-transparent network devices that establish a connection. Transparent network devices modify these messages to establish an inner connection with each other. The transparent network devices mimic at least some of the outer connection messages to establish their inner connection. The mimicked messages and any optional reset messages are intercepted by the transparent network devices to prevent them from reaching the outer connections. Transparent network devices modify network traffic, using error detection data, fragmentation data, or timestamps, so that inner connection network traffic inadvertently received by outer connection devices is rejected or ignored by the outer connection network devices. Transparent network devices may use different sequence windows for inner and outer connection network traffic. To prevent overlapping sequence windows, transparent network devices monitor the locations of the inner and outer connection sequence windows and may rapidly advance the inner connection sequence window as needed.