Abstract:
Provided is a wireless communication device. A PHICH reception unit determines whether a received signal in a PHICH region is an ACK signal or a NACK signal. When doing so, the PHICH reception unit does not receive a PHICH in a subframe in which a terminal monitors an E-PDCCH. A control signal reception unit outputs a retransmission prompting signal to a signal allocation unit when the signal outputted from the PHICH reception unit is a NACK signal and when a UL grant was not detected. Meanwhile, when a UL grant was detected, the control signal reception unit outputs the detected UL grant to the signal allocation unit. The signal allocation unit maps the transmission signal in accordance with the retransmission prompting signal and the UL grant and transmits the transmission signal from a wireless transmission unit.
Abstract:
The present disclosure aims at allowing a demodulation reference signal (DMRS) pattern suitable for a terminal to be selected from among a plurality of DMRS patterns including Legacy DMRS and Reduced DMRS. Disclosed is a terminal including: reception section 21 that receives uplink control information; control section 23 that determines a specific mapping pattern from among a plurality of mapping patterns for an uplink DMRS on the basis of the control information; and DMRS generating section 24 that generates a DMRS according to the specific mapping pattern.
Abstract:
Received Signal Strength Indicator (RSSI) is measured accurately even in a case where a discovery signal is transmitted. A receiver receives a plurality of subframes, at least one of which includes a discovery signal, and a measurer measures Reference Signal Reception Power (RSRP) using a first resource in which the discovery signal is mapped, measures RSSI using a second resource different from the first resource for which the discovery signal is mapped, and calculates Reference Signal Reception Quality (RSRQ) using RSRP and RSSI.
Abstract:
The invention relates to a universal mapping of resource elements (REs) to enhanced resource element groups (eREG) that applies to both the PDCCH and PDSCH regions; the mapping is universal since it is not user or cell-specific but applies to the resource block pairs irrespective of the actual reference signals used. The mapping is such that all REs of the resource block pair are assigned to one out of a plurality of eREGs. According to the mapping, the REs are sequentially assigned to the eREGs, in predetermined orders. Within an OFDM symbol a pair of REs is assigned to the same eREG, wherein the two REs are spaced apart from each other by 3 or 6 subcarriers.
Abstract:
Provided is a wireless communication device. A PHICH reception unit determines whether a received signal in a PHICH region is an ACK signal or a NACK signal. When doing so, the PHICH reception unit does not receive a PHICH in a subframe in which a terminal monitors an E-PDCCH. A control signal reception unit outputs a retransmission prompting signal to a signal allocation unit when the signal outputted from the PHICH reception unit is a NACK signal and when a UL grant was not detected. Meanwhile, when a UL grant was detected, the control signal reception unit outputs the detected UL grant to the signal allocation unit. The signal allocation unit maps the transmission signal in accordance with the retransmission prompting signal and the UL grant and transmits the transmission signal from a wireless transmission unit.
Abstract:
The present invention pertains to a terminal device, which, when ARQ is used for communication that uses an uplink unit band and a plurality of downlink unit bands associated with the uplink unit band, and when a transmission mode that supports up to 2 TB in a PCell is set in the terminal, is capable of reducing the amount of signaling from a base station while eliminating a lack of PUCCH resources when semi-permanent scheduling (SPS) is used in the PCell. A control unit in this device selects one value among values obtained by adding 1 to four PUCCH resource indexes, which have been preset for PUCCH resource 1 by the base station, on the basis of values for transmission power control information (TPC command for PUCCH) in a PDCCH, for which notification has been received at the start of SPS.
Abstract:
Provided are a communication apparatus and a method for receiving a response signal transmitted from a terminal configured with one or more downlink component carriers. The communication apparatus includes a transmitting section and a receiving section. The transmitting section is configured to transmit, to the terminal, downlink assignment information indicating one or more resources for downlink data, each of the one or more resources being assigned to one of the one or more downlink component carrier(s), and configured to transmit the downlink data to the terminal. The receiving section is configured to receive one or more response signals for the downlink data, which are transmitted from the terminal. The terminal makes the phase points of the response signals different in accordance with a number of downlink data which has been successively received.
Abstract:
A communication apparatus has a receiver and a decoder. The receiver receives a control signal including first downlink control information and second downlink control information, and receives decoding area information that indicates whether the extended Physical Downlink Control Channel (PDCCH) should be decoded for each of a plurality of terminal apparatuses. The decoder decodes each of a plurality of first mapping candidates in the PDCCH area or decodes each of the plurality of first mapping candidates in the PDCCH area and each of the plurality of second mapping candidates in the extended PDCCH. A number of the second mapping candidates included in the user-specific search space equals to or is more than a number of the first mapping candidates included in the common search space.
Abstract:
A base station apparatus is disclosed in which control section (150) generates an index indicating a response signal resource to be used for transmission of a response signal in response to downlink data of a plurality of CCs for at least each second CC, and transmitting section (160) transmits control information including the index. When a terminal receives the control information using only one second CC or two or more CCs among the plurality of CCs, the terminal apparatus determines the response signal resource based on the index of the second CC. Control section (150) specifies, as the response signal resource, using the index of the second CC, a first resource for transmission of a response signal in response to downlink data transmitted using only one CC or a second resource for transmission of a plurality of response signals in response to downlink data transmitted using a plurality of CCs.
Abstract:
Provided is a terminal device with which deterioration in hybrid automatic repeat request (HARQ) retransmission performance can be inhibited by continuing a downlink (DL) HARQ process for DL data before and after changing the uplink link-DL configuration. In this device, a decoder (210) stores, in a retransmission buffer, DL data transmitted from a base station, and decodes the DL data, and a wireless transmitter (222) transmits a response signal generated using a DL-data-error detection result. A soft buffer is partitioned into a plurality of regions for each retransmission process on the basis of the highest values among retransmission process numbers respectively stated in a plurality of configuration patterns which can be set in the terminal (200).