Abstract:
A system and method of operation for efficiently reusing and/or sharing at least a portion of the frequency spectrum between a first satellite spot beam and a second satellite spot beam, and/or an underlay terrestrial network associated with a second satellite spot beam. The spectrum is efficiently reused and/or shared between respective spot beams and/or associated underlay terrestrial systems in a manner minimizes interference between the respective satellite and terrestrial systems.
Abstract:
A satellite radiotelephone frequency can be reused terrestrially by an ancillary terrestrial network even within the same satellite cell, using interference cancellation techniques. Moreover, the ancillary terrestrial network can use a modified range of satellite band forward link frequencies for transmission, to reduce interference with out-of-band receivers. A modified range of satellite band forward link frequencies that is used by the ancillary terrestrial network can include only a subset of the standard satellite band forward link frequencies to provide a guard band, can include power levels that monotonically decrease as a function of increasing frequency and/or can include two or more contiguous slots per frame that are left unoccupied and/or are transmitted at reduced maximum power. Time division duplex operation of the ancillary terrestrial network may also be provided over at least a portion of satellite band return frequencies. Full or partial reverse mode operation of the ancillary terrestrial network also may be provided, where at least some of the forward link and return link frequencies are interchanged with the conventional satellite forward link and reverse link frequencies.
Abstract:
Direct, single hop narrow band TDMA radiotelephone communications among mobile satellite radiotelephones is provided via a satellite, while also providing reception of wide band TDMA radiotelephone communications from other telephone systems and/or among the satellite radiotelephones via a gateway and satellite, by providing TDMA bandwidth conversion in the mobile radiotelephones themselves. By relieving the satellite of the need to perform TDMA bandwidth conversion, the size, weight and/or power consumption of the satellite may be reduced.
Abstract:
Equalizers, which provide distortion compensation for a modulated carrier signal having a time-varying signal envelope, are adjusted at selected times in response to the signal envelope and the data signals regenerated therefrom. Each selected time corresponds to a time when the signal envelope has a preselected value. Advantageously, the disclosed equalizer adjustment is unaffected by loss of receiver synchronization to the modulated carrier signal and is applicable to a variety of communications systems and modulation formats.
Abstract:
Compensation for arbitrary combinations of linear and nonlinear distortion is provided by altering a received symbol value by a preselected amount. This amount is based on an estimate of the sequence of transmitted symbol values represented by the received symbol value at a sampling time and a number of received symbol values at other sampling times. The altered symbol value is then compared with the closest one of the possible transmitted symbol values to determine the difference, if any, therebetween. The closest one of the possible transmitted symbol values is then outputted if the difference meets a prescribed criterion. If not, the received symbol value is altered by a different amount in response to another estimate until the recited difference meets the prescribed criterion. In the disclosed embodiments, the foregoing technique is incorporated in a memory-based canceler or transversal filter.
Abstract:
The linear distortion canceller circuit (104, 104-1) obliterates the linear component of any amplitude and/or group delay distortion in a double-sideband, amplitude modulated carrier signal. Pursuant to the present invention, the carrier signal is split into first and second signals. The first signal is multiplied by a mixing signal at twice the carrier signal frequency and the mixed first signal is then added with the second signal. The disclosed apparatus and method can be used in a communications system utilizing QAM modulation.
Abstract:
The dispersive effects of frequency selective fading in a digital, FM, or AM radio system are reduced by means of an adaptive equalizer (11) comprising a cascade of feed-forward stages (1,2, . . . N), each of which includes: a first parallel wavepath (1-1, 1-2, . . . 1-N) including a first adjustable attenuator (20-1, 20-2, . . . 20-N); a second parallel wavepath (2-1, 2-2, . . . 2-N) including a second adjustable attenuator (21-1, 21-2, . . . 21-N) and delay means (22-1, 22-2, . . . 22-N); and means (23-1, 23-2, . . . 23-N) for combining the signals in said wavepaths and for coupling said combined signal to the next stage. By a suitable selection of parameters, according to two unique relationships, a transfer function can be realized which can compensate for amplitude and delay distortions caused by minimum and nonminimum phase fades.
Abstract:
The benefits of space diversity combining in the presence of interference has been found to depend upon the signal-to-interference ratios at the two antennas. For optimum results, the signal-to-interference ratios should not differ by more than .+-.3 dB. If they do, an attenuator (12) is included in the antenna circuit (10) having the poorer signal-to-interference ratio so as to reduce the signal contribution from that antenna. Optimum signal conditions are disclosed.
Abstract:
In a space diversity receiver, the relative phase of the two received signals is varied in manner to minimize amplitude dispersion in the combined signal. A phase control signal is derived from the combined signal by phase modulating one of the received signals, and then detecting the fundamental amplitude component induced by said modulation within two selected portions of the combined signal spectrum. The fundamental component of the envelope modulation of the weaker of the two signal portions is used to control the relative phase of the two received signals so as to minimize the amplitude dispersion in the combined signal across the band. In the absence of inband phase dispersion needed in order for the compensating phase shift to effect the two signal portions differently, a relative delay is introduced in one of the two received signal paths.
Abstract:
A system (10) and method (30) comprises a detector that is configured to enable a mode of a first device (14) and/or to enable a mode of a second device (15) responsive to a detection that a proximity criterion is satisfied between the first device and an entity (Entity 1) and responsive to at least one of a position, velocity and a Time-of-Day and where the second device is not the entity and is not associated with the entity, and where the entity is not involved in providing a communications service to the first and/or second device.