Abstract:
Systems, methods, and devices for accessing a service of a wireless carrier network through a wireless local area network (WLAN) are described. A method includes selecting one or more traffic management parameters associated with the WLAN based at least in part on one or more quality of service (QoS) parameters associated with the service of the wireless carrier network being accessed. The method further includes transmitting packets over the WLAN using the selected one or more traffic management parameters associated with the WLAN when a user equipment accesses the service of the wireless carrier network through the WLAN. The user equipment enforces the selected one or more traffic management parameters for communications to the wireless carrier network. An access point enforces the selected one or more traffic management parameters for communications to the user equipment.
Abstract:
Methods, systems, and devices are described for wireless communication to enable a UE to establish emergency services (e.g., IMS emergency calls) over WLAN (e.g., Wi-Fi) in 3GPP networks. Such mechanisms may help ensure that an ePDG capable of supporting emergency services is selected. Further, such mechanisms may help ensure that an appropriately located ePDG is selected. For example, the selected ePDG may be located in the visiting public land mobile network (VPLMN) for a roaming UE so that IMS emergency calls are routed appropriately. Selection of the ePDG may be under control of the network with which the UE is establishing connectivity for the emergency call, namely the VPLMN, as opposed to the home PLMN (HPLMN), for example. Such mechanisms may rely on knowledge that the connectivity being established is for emergency services, as well as other information regarding the UE, such as a current location of the UE.
Abstract:
A method, an apparatus, and a computer program product for wireless communication at a first user equipment (UE) are provided. The apparatus sends a request to a second UE for establishing a call connection, receives from the second UE an acknowledgment for establishing the call connection, establishes at least one first dedicated bearer between the first UE and a network for communicating media packets with the second UE, sends first dummy data to the second UE via the established at least one first dedicated bearer, receives at least one of second dummy data or a media packet from the second UE via the established at least one first dedicated bearer, and exchanges media packets with the second UE via the established at least one first dedicated bearer after receiving the at least one of the second dummy data or the media packet from the second UE.
Abstract:
A method to support two scenarios in trusted wireless local area network (WLAN) access is provided herein. The method may be performed, for example, by a user equipment (UE). The method generally includes requesting a nonseamless wireless offload (NSWO) connection to a network during an extensible authentication protocol (EAP) procedure and receiving, after successful authentication, at least one of an internet protocol (IP) address or a reason code from a network entity indicating NSWO is not allowed.
Abstract:
Systems, methods, apparatus, and devices for wireless communication are described. A first method includes establishing a first wireless local area network (WLAN) interface between a WLAN chipset and an application processor (AP) subsystem, and establishing a second WLAN interface between the WLAN chipset and a modem subsystem. The second WLAN interface may include a data path between the WLAN chipset and the modem subsystem. The data path may bypass the AP subsystem. A second method includes establishing a WLAN interface between a WLAN chipset and AP subsystem, and dynamically managing WLAN connectivity through the WLAN interface using a modem subsystem.
Abstract:
Method and apparatus for blocking session management procedures for a network slice during an NSSAA procedure. The apparatus receives a network slice-specific authentication command for a network slice that is currently allowed. The apparatus determines that the network slice is being authenticated based on the received network slice-specific authentication command. The apparatus blocks session management procedures associated with the network slice based on the determination that the network slice is being authenticated.
Abstract:
Aspects directed towards Quality of Service (QoS) flow remapping are disclosed. In an example, upon detecting a mapping reconfiguration of a first QoS flow from a first data radio bearer (DRB) to another DRB, a Service Data Adaptation Protocol (SDAP) control protocol data unit (PDU) is generated indicating that a final SDAP data PDU associated with the first QoS flow has been transmitted on the first DRB. The SDAP control PDU is then transmitted via the first DRB. In another example, upon detecting a mapping reconfiguration of a first QoS flow from a first DRB to another DRB, an end marker parameter is set in an SDAP header of a first SDAP data PDU received from an upper layer after the mapping reconfiguration indicating that the first SDAP data PDU is a final SDAP data PDU associated with the first QoS flow transmitted on the first DRB.
Abstract:
In aspects of the disclosure, a method, an apparatus, and a computer program product for wireless communication are provided. In one aspect, the apparatus determines if a connection to a PLMN has been established. In another aspect, the apparatus builds a FQDN based on the determination by attempting to build the FQDN using each of the prioritized FQDNs in order of priority until the FQDN is built, building the FQDN using a PLMN ID of the PLMN if it is determined that the PLMN is found in the list, or building the FQDN based on the wildcard PLMN if it is determined that the list comprises the wildcard PLMN. Further still, the apparatus selects a network security gateway to provide network security and internet working control based on the FQDN.
Abstract:
Certain aspects of the present disclosure provide techniques for per-flow jumbo maximum transmission unit (MTU) in new radio (NR) systems. A method of wireless communication by a user equipment (UE) is provided. The method generally includes determining a default MTU size to be used for communications in a packet data network (PDN). The method includes determining one or more per-flow MTU sizes, different than the default MTU size, to be used for communications in the PDN. The method includes communicating in the PDN according to the determined per-flow MTU sizes.
Abstract:
A method, an apparatus, and a computer program product are provided. The apparatus may be a UE configured to receive from a base station access parameters corresponding to respective types of access controls for different types of data services, receive a TFT established at a core network based on mapping a packet filter to access control information for each type of access control, receive a data packet from an application, match the data packet to the packet filter to determine access control information corresponding to the data packet, and establish communication for the data packet based on access parameters for the determined access control information. Alternatively, the apparatus may be policy server configured to receive a request for traffic control regarding data being communicated to an application server, determine a policy update for the application server based on the request, and transmit the policy update to a UE.