Abstract:
Certain aspects relate to methods and apparatus for traffic separation in a multi AP (MAP) network. In some cases, a MAP Controller may configure sets of SSIDs to a single VLAN ID in a Traffic Separation Policy and distribute the Traffic Separation Policy information to the MAP Agents.
Abstract:
A device includes a memory, a processor, and a transceiver. The memory is configured to store capability data corresponding to a set of stations. The processor is configured to select, based at least in part on the capability data, one of a multi-user multiple-input multiple-output (MU-MIMO) mode or an orthogonal frequency-division multiple access (OFDMA) mode for wireless communication with a subset of the set of stations. The transceiver is configured to wirelessly communicate with the subset in the selected one of the MU-MIMO mode or the OFDMA mode.
Abstract:
Apparatuses and methods for separately scheduling and grouping multiple wireless local area network (WLAN) users are disclosed. The apparatuses and methods include scheduling, at an access point (AP), multiple wireless stations (STAs) associated with the AP; identifying based at least in part on the ranking, a group of STAs from the STAs for transmission of data over a single orthogonal frequency-division multiple access (OFDMA) frame in a WLAN; and providing information resulting from scheduling the STAs and identifying the group of STAs to at least one of the STAs. In others aspects, the apparatuses and methods include receiving at an STA from an AP, scheduling information for a group of STAs including the STA; and transmitting based on the scheduling information, data over an OFDMA frame in an unlicensed or shared spectrum, the STA having a traffic load different from the traffic load of the at least one additional STA.
Abstract:
Apparatus and methods are disclosed relating to the use and performance of a wireless charger, such as one that utilizes inductive coupling between a primary coil at the charger and a secondary coil at a mobile device that lands on the charger. In particular, the wireless charger is implemented in a wireless docking environment, where the mobile device docks with a docking host. In one example, the wireless charger is integrated as a unit with the wireless docking host. In another example, the wireless charger is a peripheral in the wireless docking environment managed by the docking host.
Abstract:
Various aspects of the present disclosure enable a persistent docking procedure that, once a persistent docking environment has been established, can simplify the future establishment of a docking environment between the dockee and docking host. Other aspects, embodiments, and features are also claimed and described.
Abstract:
An allocation technique is operable to allocate communication resources in multi-hop networks under the joint consideration of communication requirements and fairness. Embodiments operate to provide allocation of time slot resources in TDMA based multi-hop wireless networks under the joint consideration of QoS and fairness. Embodiments operate with respect to information regarding maximal common slot set flow contention. An iterative process is applied with respect to the information regarding maximal common slot set flow contention to allocate communication resources providing a balance between meeting communication requirements and fairness. According to embodiments, an inter-graph process iteratively selects a maximal common slot set for which resource allocation with respect to various flows is to be performed and an intra-graph process assigns communication resources in the maximal common slot set providing a balancing between meeting communication requirements (e.g., QoS) and providing fairness. Other aspects, embodiments, and features are also claim and described.