Abstract:
A method of registering a target device includes: receiving a first indication to initiate a registration; and determining a suggested registration location and/or or a suggested registration name. The method further includes: providing a second indication of at least one of the suggested registration location or the suggested registration name; providing a third indication requesting at least one of whether the suggested registration location is accepted or whether the suggested registration name is accepted; receiving a fourth indication indicating at least one of whether the suggested registration location is accepted or whether the suggested registration name is accepted; and registering the target device by storing target device information based on the fourth indication.
Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses in a mobile device to request a transport vehicle. Techniques are provided which may be implemented using various methods and/or apparatuses in a transport vehicle to respond to a request from a mobile device. Various embodiments include customer and transport authentication and security techniques. Various embodiments include location update techniques to enable a transport vehicle to navigate to a mobile device, even in areas of low position accuracy for traditional GNSS and terrestrial transceiver-based systems.
Abstract:
Disclosed is an apparatus and method for synchronization of sensing operations performed by a plurality of devices. The method may include collecting sensing capabilities of one or more connected devices that are communicably coupled with a central device. Each connected device may include one or more sensors, and the sensing capabilities may include at least sensor type and sensing interval for each sensor. The method may also include coordinating sensing operations performed by the central device and the one or more connected devices.
Abstract:
A method of using one or more radio-frequency signals includes: monitoring, with at least one radio-frequency (RF) receiver, one or more RF characteristics of one or more wireless RF signals from one or more RF devices in an environment; comparing the one or more RF characteristics to a reference RF profile for the environment; and initiating an action based on a difference between the one or more RF characteristics and the reference RF profile determined by the comparing.
Abstract:
Methods, systems, computer-readable media, and apparatuses for mapping multiple antenna systems using crowdsourcing data are presented. One disclosed example method includes the steps of detecting a condition associated with transmission of a plurality of wireless signals that are indistinguishable in content using multiple antennas dispersed at different locations and indicative of a base station as a common transmitter; and in response to detecting the condition, identifying the base station as ineligible for providing signals for use with a range-based positioning technique.
Abstract:
Method, apparatus and computer program product for monitoring wireless wide area network almanac integrity in a wireless wide area network are disclosed. In one embodiment, the method comprises receiving crowdsourcing data from a plurality of mobile devices, determining a change to a wireless wide area network almanac using the crowdsourcing data, and updating a database in accordance with the change to the wireless wide area network almanac.
Abstract:
Systems, apparatus and methods for a mobile device and a base station almanac server to throttle crowdsourcing information are presented. The crowdsourcing information is used to improve a location of a base station in a base station almanac. A portion of the base station almanac is provided to a mobile device. For example, the mobile device may identify its current cell and request the base station almanac. The mobile device records crowdsourcing information to identify, for each particular base station of at least one base station, a cellular identifier for the particular base station, optional ranging information between the particular base station and the mobile device, and an independent position of the mobile device. The independent position of the mobile device may be formed from global navigation satellite system (GNSS) or station signals independent of the at least one base station.
Abstract:
Techniques for publishing location information associated with a non-geotagged transceiver are disclosed. A method for publishing a position of a non-geotagged transceiver in a wireless communication system includes determining a first position of the non-geotagged transceiver based on a periodic neighbor list, determining a second position of the non-geotagged transceiver based on an accumulated neighbor list, determining if the first position and the second position agree, publishing a third position if the first position and the second position agree, such that the third position is determined based on the union of the periodic neighbor list and the accumulated neighbor list, and resetting the accumulated neighbor list if the first and second position do not agree.
Abstract:
Systems and methods of network based positioning include a server configured to assign priority levels to mobile devices locatable within the network, and allocate network resources for network based positioning of the locatable mobile devices, based on the corresponding priority levels assigned to the mobile devices. The server may further be configured to admit only a selected subset of the locatable mobile devices into the network for purposes of network based positioning and deny admission to the remaining locatable mobile devices, wherein the selected subset can be determined based on an attribute of the mobile device and/or a characteristic of the user of the mobile device.
Abstract:
A level 3 (L3) sparse network almanac (SNA) is generated using data from a base station almanac with information for a plurality of base stations. The information for base stations includes cell identifiers that include an L3 region code that is one layer above a cell tower identification level. Cell boundaries are determined from the base station information. The cell boundaries are used to estimate a region of coverage for the L3 SNA, which may be stored in a database. For example, region points may be generated from the cell boundaries, and used to estimate the region of coverage for the L3 SNA. The region of coverage may be determined, e.g., as a minimum enclosing circle or other similar techniques. The larger of an estimated region size parameter, e.g., a radius of a circle, and a default size may be used for the region of coverage.