摘要:
First and second transmitters transmit signals communicating the same information, e.g., program segment, but at different times. Different carriers may, but need not be, used by the different transmitters. If a wireless terminal can not recover broadcast segment information from one carrier, the wireless terminal can switch to another transmitter and recover the information, e.g., on another carrier, since the broadcasts are intentionally offset in time. In some embodiments, the timing is offset such that a single channel receiver is able to recover signals corresponding to the same program segment from two sources, and perform a decoding and information recovery using input from both sources, where recovery using input from a single source is not possible. Symbol level timing synchronization of base stations is not required thereby allowing for simpler implementations and/or lower overhead, as compared to systems which require base stations to be synchronized to the symbol timing level.
摘要:
Methods and apparatus are described where loading information regarding loading conditions at a neighboring base station is received at a first base station and then communicated, e.g., broadcast, by the first base station to mobiles within the cell in which the first base station is located. Since the neighbor base station's loading information is being communicated to a mobile currently connected to the first base station via a reliable communications channel of the first base station, the mobile can be expected to be able to reliably recover loading factor information corresponding to not only the first base station but to the neighboring base station. By utilizing such loading factor information, the mobile can generate an improved uplink interference report. The first base station receives such interference reports from wireless terminals in its cell, facilitating efficient resource allocation and interference control.
摘要:
A wireless terminal measures the received power of a tone corresponding to an intention base station null output, measures the received power of pilot signals, and determines a signal to noise ratio of the received pilot signal. The wireless terminal calculates a downlink signal to noise ratio saturation level representative of the SNR of a received downlink signal that the wireless terminal would measure on a received signal transmitted by the base station at infinite power. The calculated downlink signal to noise ratio saturation level is a function of the determined interference power, the measured received pilot signal power, and the determined pilot signal SNR. A report is generated corresponding to one of a plurality of quantized levels, the selected quantized level being the closest representation to the calculated downlink signal to noise ratio saturation level. The generated report is communicated using a dedicated control channel segment in a predetermined uplink timing structure.
摘要:
A portable wireless terminal generates and transmits a beacon signal. The beacon signal includes a sequence of beacon signal bursts, each beacon signal burst including one or more beacon symbols. A beacon symbol is transmitted using the air link resources of a beacon symbol transmission unit at a relatively high transmission power level with respect to user data symbols transmitted from the same wireless terminal, thus facilitating easy detection by other wireless terminals. The beacon symbols of the beacon signal occupy a small fraction of the total available air link resources. Beacon signals can, and sometimes do, convey wireless terminal identification information, via the location of the beacon symbols within the portion of the air link resource reserved for beacon symbol transmission units.
摘要:
Wireless terminal beacon signaling is used to achieve timing synchronization between two wireless terminals in a wireless communication system, e.g., in an ad hoc network lacking a centralized timing reference. An exemplary timing structure used by an individual wireless terminal includes a beacon transmission time interval, a beacon monitoring time interval and a silence time interval. A first wireless terminal monitoring for beacon signals from other wireless terminals, detects a beacon signal portion from a second wireless terminal and determines a timing adjustment as a function of the detected beacon signal portion. The first wireless terminal applies the determined timing adjustment, e.g., time shifting its timing structure, such that its beacon signal can be detected by the second wireless terminal. Implementation of the determined timing adjustment sets the timing structures of the two wireless terminals to have a fixed relationship thereby allowing for coordinated communications including a peer-to-peer communications session.
摘要:
A wireless terminal measures the received power of a tone corresponding to an intention base station null output, measures the received power of pilot signals, and determines a signal to noise ratio of the received pilot signal. The wireless terminal calculates a downlink signal to noise ratio saturation level representative of the SNR of a received downlink signal that the wireless terminal would measure on a received signal transmitted by the base station at infinite power. The calculated downlink signal to noise ratio saturation level is a function of the determined interference power, the measured received pilot signal power, and the determined pilot signal SNR. A report is generated corresponding to one of a plurality of quantized levels, the selected quantized level being the closest representation to the calculated downlink signal to noise ratio saturation level. The generated report is communicated using a dedicated control channel segment in a predetermined uplink timing structure.
摘要:
An uplink dedicated control channel reporting structure includes a plurality of different bit size reports, e.g. 1 bit, 3 bit and 4 bit reports, for reporting a wireless terminal's backlog information of uplink traffic request group queues. Smaller bit size reports are transmitted more frequently than larger reports. A 1 bit request report indicates whether or not there are any MAC frames of information to be communicated in a set of two request group queues. A 3 bit request report indicates an amount of backlog information corresponding to a first set of request group queues and a second set of request group queues. A 4 bit request report indicates an amount of backlog information corresponding to a set of request group queues. The 4 bit request report is capable of reporting information on any of a plurality of uplink traffic channel request group queues being maintained by the wireless terminal.
摘要:
A transmitter apparatus at a base station transmits program information using a plurality of carriers with at least some of the carriers having different transmit power levels. The carrier associated with the highest transmit power level conveys broadcast information carrying basic program information. A carrier associated with a lower power level conveys broadcast information including enhancement information and/or additional content. The enhancement information and/or additional content may include a higher level of video and/or audio resolution, additional video and/or audio content, support for additional languages, a text stream, and/or advertisements. A wireless terminal tunes, receives and processes the broadcast information. A wireless terminal can recover different levels of resolution of a broadcast program, e.g., a digital video broadcast program, and/or different amounts of additional content, depending upon which carriers are being used.
摘要:
Systems and methodologies are described that facilitate generating and/or analyzing downlink transmission units in OFDM TDD environments. Beacon signals may be selectively inserted within downlink transmission units; for example, the position of Beacon signals may vary from cell to cell. Further, the position may be a function of a characteristic of a cell (e.g., cell identifier) and/or an expected drift. Moreover, a Beacon signal may be interjected at a location in a downlink transmission unit so as to mitigate alignment with disparate Beacon signals in downlink transmission units associated with differing cells. Additionally, an identity of a cell providing downlink transmission units may be determined by analyzing a position of the Beacon signal within the downlink transmission units.
摘要:
A portable wireless terminal generates and transmits a beacon signal. The beacon signal includes a sequence of beacon signal bursts, each beacon signal burst including one or more beacon symbols. A beacon symbol is transmitted using the air link resources of a beacon symbol transmission unit at a relatively high transmission power level with respect to user data symbols transmitted from the same wireless terminal, thus facilitating easy detection by other wireless terminals. The beacon symbols of the beacon signal occupy a small fraction of the total available air link resources. Beacon signals can, and sometimes do, convey wireless terminal identification information, via the location of the beacon symbols within the portion of the air link resource reserved for beacon symbol transmission units.