摘要:
A process for casting and preparing an ingot of a beta-phase NiAl-based material, particularly for use in PVD coating processes. The method entails melting a nickel-aluminum composition having an aluminum content below that required for stoichiometric beta-phase NiAl intermetallic so as to form a melt that includes nickel and Ni3Al. Aluminum is then added to the melt, causing an exothermic reaction between nickel and aluminum as the melt equilibrium shifts from Ni3Al to NiAl. However, the aluminum is added at a rate sufficiently low to avoid a violent exothermic reaction. The addition of aluminum continues until sufficient aluminum has been added to the melt to yield a beta-phase NiAl-based material. The beta-phase NiAl-based material is then solidified to form an ingot, which is then heated and pressed to close porosity and homogenize the microstructure of the ingot.
摘要:
An environmental overlay coating for articles used in hostile thermal environments, such as turbine, combustor and augmentor components of a gas turbine engine. The overlay coating is predominantly beta-phase NiAl with limited alloying additions of zirconium and chromium. The overlay coating is useful as an environmental coating and as a bond coat that improves the spallation resistance of a thermal barrier coating (TBC) system.
摘要:
Coatings suitable for use as protective oxide-forming coatings on Nb-based substrates exposed to high temperatures and oxidative environments. The coatings contain chromium and/or molybdenum, preferably contains silicon, and optionally contains niobium, titanium, hafnium, iron, rhenium, tantalum, and/or tungsten, which in combination form multiple intermetallic phases, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. Depending on the particular coating composition, the intermetallic phases maybe: a silicon-modified Cr2Nb Laves phase and optionally a chromium solid solution phase, a CrNbSi intermetallic phase, and/or an M3Si intermetallic phase where M is niobium, titanium, and/or chromium; or M5Si3, MSi2 and/or M3Si2 where M is molybdenum, niobium, titanium, chromium, hafnium, iron, rhenium, tantalum, and/or tungsten.
摘要翻译:适用于暴露于高温和氧化环境的Nb基基底上的保护性氧化物形成涂层的涂料。 涂层含有铬和/或钼,优选含有硅,并且任选地包含铌,钛,铪,铁,铼,钽和/或钨,其组合形成多个金属间相,其组合形成一个或多个金属间相 促进形成缓慢生长的氧化皮。 根据具体的涂层组成,金属间化合物相可以是硅改性的Cr 2 Nb Laves相和任选的铬固溶体相,CrNbSi金属间相和/或M3Si金属间相,其中M是铌,钛和/或铬 ; 或M5Si3,MSi2和/或M3Si2,其中M是钼,铌,钛,铬,铪,铁,铼,钽和/或钨。
摘要:
Coatings suitable for use as protective oxide-forming coatings on Nb-based substrates exposed to high temperatures and oxidative environments. The coatings contain chromium and/or molybdenum, preferably contains silicon, and optionally contains niobium, titanium, hafnium, iron, rhenium, tantalum, and/or tungsten, which in combination form multiple intermetallic phases, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. Depending on the particular coating composition, the intermetallic phases may be: a silicon-modified Cr2Nb Laves phase and optionally a chromium solid solution phase, a CrNbSi intermetallic phase, and/or an M3Si intermetallic phase where M is niobium, titanium, and/or chromium; or M5Si3, MSi2 and/or M3Si2 where M is molybdenum, niobium, titanium, chromium, hafnium, iron, rhenium, tantalum, and/or tungsten.
摘要翻译:适用于暴露于高温和氧化环境的Nb基基底上的保护性氧化物形成涂层的涂料。 涂层含有铬和/或钼,优选含有硅,并且任选地包含铌,钛,铪,铁,铼,钽和/或钨,其组合形成多个金属间相,其组合形成一个或多个金属间相 促进形成缓慢生长的氧化皮。 根据特定的涂料组合物,金属间相可以是:硅改性的Cr 2 Nb Laves相和任选的铬固溶相,CrNbSi金属间相和/或M3Si金属间相,其中M是铌,钛和/或 铬; 或M5Si3,MSi2和/或M3Si2,其中M是钼,铌,钛,铬,铪,铁,铼,钽和/或钨。
摘要:
The present invention provides for a squealer tip to include some proportion of a highly oxidation-resistant material, and a method for casting same, such that if any environmental coating were removed, the tip would retain some increased level of environmental resistance. The oxidation-resistant material optionally may also be a high abrasion resistance material, such that recession of the tip due to rubbing against a stator would be reduced. In a preferred embodiment, an abrasion-resistant and/or oxidation-resistant material is placed and suitably anchored into the tip region of a wax precursor used to cast a turbine airfoil. During the casting operation, the abrasion-resistant and/or oxidation-resistant material is not completely melted. As the alloy used to form the majority of the turbine blade solidifies, the abrasion and/or oxidation resistant material is incorporated into the turbine airfoil by the solidification of the alloy around it.
摘要:
A method for applying substantially stoichiometric NiAl to the surface of a superalloy substrate. These coatings are applied to substrates subjected to high temperatures and thermal cycling by providing a powder of the substantially stoichiometric material with the desired minor additions of rare earth elements, Cr or Zr. The coatings are applied by a thermal spray process utilizing hydrogen as a fuel while generating a highly reducing flame. The thermal spray method melts the powder and directs it onto the surface of the turbine component that is to be coated. The powder size is carefully controlled to prevent oxidation of the powder while providing a controlled surface finish. The surface roughness of the bond coat is further mechanically worked to a predetermined surface finish prior to application of the ceramic thermal barrier layer by a PVD method. Thermal barrier systems applied using these carefully controlled predetermined parameters provide outstanding resistance to TBC spallation under conditions of high cyclic stresses.
摘要:
Coatings suitable for use as protective oxide-forming coatings on Nb-based substrates exposed to high temperatures and oxidative environments. The coatings contain chromium and/or molybdenum, preferably contains silicon, and optionally contains niobium, titanium, hafnium, iron, rhenium, tantalum, and/or tungsten, which in combination form multiple intermetallic phases, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. Depending on the particular coating composition, the intermetallic phases may be: a silicon-modified Cr2Nb Laves phase and optionally a chromium solid solution phase, a CrNbSi intermetallic phase, and/or an M3Si intermetallic phase where M is niobium, titanium, and/or chromium; or M5Si3, MSi2 and/or M3Si2 where M is molybdenum, niobium, titanium, chromium, hafnium, iron, rhenium, tantalum, and/or tungsten.
摘要翻译:适用于暴露于高温和氧化环境的Nb基基底上的保护性氧化物形成涂层的涂料。 涂层含有铬和/或钼,优选含有硅,并且任选地包含铌,钛,铪,铁,铼,钽和/或钨,其组合形成多个金属间相,其组合形成一个或多个金属间相 促进形成缓慢生长的氧化皮。 根据特定的涂料组合物,金属间相可以是:硅改性的Cr 2 Nb Laves相和任选的铬固溶相,CrNbSi金属间相和/或M3Si金属间相,其中M是铌,钛和/或 铬; 或M5Si3,MSi2和/或M3Si2,其中M是钼,铌,钛,铬,铪,铁,铼,钽和/或钨。
摘要:
A coating suitable for use as protective oxide-forming coatings on Nb-based substrates, and particularly monolithic niobium-based alloys, exposed to high temperatures and oxidative environments. The coating contains aluminum, may further contain silicon, and optionally contains niobium, titanium, hafnium, and/or chromium, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. The intermetallic phases may be M(Al,Si)3, M5(Al,Si)3, and/or M3Si5Al2 where M is niobium, titanium, hafnium, and/or chromium.
摘要:
A coating suitable for use as protective oxide-forming coatings on Nb-based substrates, and particularly monolithic niobium-based alloys, exposed to high temperatures and oxidative environments. The coating contains aluminum, may further contain silicon, and optionally contains niobium, titanium, hafnium, and/or chromium, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. The intermetallic phases may be M(Al,Si)3, M5(Al,Si)3, and/or M3Si5Al2 where M is niobium, titanium, hafnium, and/or chromium.
摘要:
An article is coasted by preparing a coating source having an aluminum halide, a fluoride or an iodide of a modifying element as a source of the modifying element, and a carrier gas. The modifying element is zirconium, hafnium, and yttrium, or combinations thereof. The coating source is contacted to the article, and the coating source and the article are heated to a coating temperature of at least about 1850° F. for a period of time sufficient to permit aluminum and the modifying element to coat onto the surface of the article. The preferred fluorides of modifying elements are zirconium tetrafluoride and hafnium tetrafluoride.