Abstract:
An integrated circuit structure including a substrate having an upper surface; a gallium nitride layer disposed on the upper surface of the substrate; and a photoconductive semiconductor switch laterally disposed alongside a transistor on the gallium nitride layer integrated into the integrated circuit structure; an EMF shield enclosing the substrate, the gallium nitride layer and the photoconductive semiconductor switch laterally disposed alongside the transistor on the gallium nitride layer integrated into the integrated circuit structure; and a signal line electronically coupled with the photoconductive semiconductor switch, the signal line penetrating the EMF shield.
Abstract:
A power amplifier having: a plurality of N amplifier modules, where N is an integer greater than one; an M:N power splitter having M inputs, where M is an integer less than N, and N outputs, each one of the N outputs being coupled to an input of a corresponding one of the plurality of N power amplifiers; a plurality of M delay lines, each one the M delay lines having an output coupled to a corresponding one of the M inputs of the M:N power splitter, each one of the plurality of M delay lines being coupled to a common input of the power amplifier.
Abstract:
A radio frequency (RF) energy transmission line transition for coupling RF energy between a pair of RF transmission line sections disposed on intersecting surfaces of a corresponding one of a pair of conductive members, a first one of the pair of conductive members having a wall with a jog therein for receiving an end portion of a second one of the pair of conductive members, the end portion of an electrically conductive strip of the first one of the pair of radio frequency transmission line sections being disposed on, and electrically connected to, an electrically conductive strip of a second one of the pair of radio frequency transmission line sections.
Abstract:
A MMIC support and cooling structure having a three-dimensional, thermally conductive support structure having a plurality of surfaces and a circuit having a plurality of heat generating electrical components disposed on a first portion of the surfaces and interconnected by microwave transmission lines disposed on a second portion of the plurality of surfaces of the thermally conductive support structure.
Abstract:
An electrically conductive shield for a microwave transmission line-electrical connector interconnect region wherein the microwave transmission line is connected to the electrical connector. An elastic, dielectric material is disposed between opposing surfaces of the dielectric structure and the housing. An electrically conductive material is disposed on an outer surface of the elastic, dielectric material to provide an electrically conductive shield. The electrically conductive shield is disposed over the opposing surfaces of the dielectric structure and the housing.
Abstract:
A heat spreader provided having: as ceramic substrate; and metallization layer structure disposed on at least one surface of the substrate. The metallization layer structure includes: a thick film layer disposed on the at least one surface of the substrate; a diffusion barrier layer on, and in direct contact with the thick film layer; and as heat conducting layer disposed on, and in direct contact with, the diffusion barrier layer. The diffusion barrier layer inhibits material in the thick film layer and material in the heat conducting layer from diffusing between the thick film layer and the heat conductive layer. The metallization layer structure is disposed on a plurality of sides of the substrate.