Abstract:
A synthetic polymer film (34A), (34B) having a surface which has a plurality of first raised portions (34Ap), (34Bp), wherein a two-dimensional size of the plurality of first raised portions (34Ap), (34Bp) is in a range of more than 20 nm and less than 500 nm when viewed in a normal direction of the synthetic polymer film (34A), (34B); and the surface has a microbicidal effect.
Abstract:
A laminated printed matter is provided which is less likely to cause apparently white-tinged images and capable of restraining a decrease in image quality of the printed matter. The laminated printed matter includes a printed matter and an anti-reflection film. The anti-reflection film is attached to a viewing side surface of the printed matter. The laminated printed matter is provided with a frame-like region having a lower light transmittance than an anti-reflection surface of the anti-reflection film on an outer edge. Preferably, the anti-reflection film has, on a viewing side surface thereof, an anti-reflection structure with multiple protrusions disposed at a pitch not greater than the visible light wavelength.
Abstract:
A display device in which ambient light reflections, for example, from IPS or FFS type displays are reduced by a circular polariser (e.g., linear polariser combined with external quarter waveplate) to make the light circular polarized, as it traverses the multiple reflective layers between the polariser and LC layer, and then an internal quarter waveplate converts the light back to linear polarisation before it enters the LC, so the display can operate as normal, while the circular polariser absorbs unwanted reflections of ambient light from within the display.
Abstract:
In the present embodiment, a sealing agent (50) sealing two substates contains a low melting-point glass material and is adhered to each of a first substrate (10) and a second substrate (20), a barrier rib (60), which is formed in such a manner as to surround the outer periphery of an electronic element (30), is disposed between the sealing agent (50) and the electronic element (30), and between the first substrate (10) and the second substrate (20), and the sealing agent (50) is spaced apart from the barrier rib (60). As a result, a deterioration of the electronic element, caused by the heat produced when sealing, may be prevented while the electronic element formed between the two substrates is protected from moisture and oxygen.
Abstract:
[Object] To enable a thermal switch (7), having high durability, capable of controlling the thermal conductivity by an electric field (E) to be achieved.[Solution] A composite material (COM) which is deformed by an electric field (E) formed between a lower electrode (2) and an upper electrode (6) and which contains a polymer material (PO) and a liquid crystal material (LC) and a low-thermal conductivity medium (4) with a thermal conductivity lower than the thermal conductivity of the composite material (COM) when the thermal switch (7) is ON are placed between a heatsink (11) which is a first member and a heat source (10) which is a second member in a thermal switch (7).
Abstract:
The present invention provides a liquid crystal display device including: a liquid crystal panel including a viewing surface side substrate, a liquid crystal layer, and a back surface side substrate; and a backlight including a reflector facing the back surface side substrate, wherein the liquid crystal panel in a plan view includes multiple pixel regions and a non-display region between the pixel regions, in the pixel regions, color filters are disposed, in the non-display region, a gate electrode layer, a source-drain electrode layer, and a semiconductor layer are disposed, the back surface side substrate includes a reflective surface facing the backlight in at least part of the non-display region, and the reflective surface is constituted by a metal material having a higher reflectance than a metal material contained in portions of the source-drain electrode layer that are connected to the semiconductor layer.
Abstract:
A liquid crystal display panel (100A, 100B) includes a transverse electric field mode liquid crystal cell (10), a first polarizing plate (22A, 22B) disposed on a back surface side of the liquid crystal cell (10), and a second polarizing plate (24A, 24B) disposed on a viewer's side of the liquid crystal cell (10). A liquid crystal layer (18) contains a nematic liquid crystal whose dielectric anisotropy is negative. The liquid crystal layer (18) has And of less than 550 nm, where Δn is the birefringent index of the nematic liquid crystal and d is the thickness of the liquid crystal layer. The liquid crystal layer (18) is in a twist alignment state when no voltage is applied. When polarized light whose Stokes parameter S3 takes on an absolute value |S3| of 1.00 enters the liquid crystal layer (18), |S3| of polarized light having perpendicularly passed through the liquid crystal layer (18) is 0.85 or greater. The first polarizing plate (22A, 22B) and the second polarizing plate (24A, 24B) are circularly polarizing plates or elliptically polarizing plates whose ellipticity is 0.422 or greater.
Abstract:
The present invention provides a mirror display that enables simultaneous perception of a mirror image and an image with suppressed uncomfortable feeling. The mirror display of the present invention includes a half mirror plate including a half mirror layer, and a display device. The display device is disposed on the back surface side of the half mirror plate. The distance between a display surface of the display device and a display surface of the half mirror plate is not smaller than 100 mm. The half mirror layer preferably includes a reflective polarizer.
Abstract:
The present invention provides a mirror display that can suppress warp of a half mirror plate with a reflective polarizer under heat to prevent distortion of a reflected image in a mirror mode. The mirror display of the present invention includes a half mirror plate that includes a first reflective polarizer and a first base material, a display device, and a warp-suppressing member that suppresses shrinking of the first reflective polarizer under heat. The first reflective polarizer and the first base material are integrated, and the display device is disposed on the back surface side of the half mirror plate.
Abstract:
A mold of at least one embodiment of the present invention includes: a base; a conductive layer provided on the base; and an anodized film provided on the conductive layer, the anodized film having an inverted motheye structure in its surface, the inverted motheye structure having a plurality of recessed portions whose two-dimensional size viewed in a direction normal to the surface is not less than 10 nm and less than 500 nm, wherein the base, the conductive layer, and the anodized film are capable of transmitting ultraviolet light.