摘要:
Present invention discloses a high-pressure vessel of large size formed with a limited size of e.g. Ni—Cr based precipitation hardenable superalloy. Vessel may have multiple zones.For instance, the high-pressure vessel may be divided into at least three regions with flow-restricting devices and the crystallization region is set higher temperature than other regions. This structure helps to reliably seal both ends of the high-pressure vessel, at the same time, may help to greatly reduce unfavorable precipitation of group III nitride at the bottom of the vessel.Invention also discloses novel procedures to grow crystals with improved purity, transparency and structural quality. Alkali metal-containing mineralizers are charged with minimum exposure to oxygen and moisture until the high-pressure vessel is filled with ammonia. Several methods to reduce oxygen contamination during the process steps are presented. Back etching of seed crystals and a new temperature ramping scheme to improve structural quality are disclosed.
摘要:
In one instance, the seed crystal of this invention provides a nitrogen-polar c-plane surface of a GaN layer supported by a metallic plate. The coefficient of thermal expansion of the metallic plate matches that of GaN layer. The GaN layer is bonded to the metallic plate with bonding metal. The bonding metal not only bonds the GaN layer to the metallic plate but also covers the entire surface of the metallic plate to prevent corrosion of the metallic plate and optionally spontaneous nucleation of GaN on the metallic plate during the bulk GaN growth in supercritical ammonia. The bonding metal is compatible with the corrosive environment of ammonothermal growth.
摘要:
In one instance, the seed crystal of this invention provides a nitrogen-polar c-plane surface of a GaN layer supported by a metallic plate. The coefficient of thermal expansion of the metallic plate matches that of GaN layer. The GaN layer is bonded to the metallic plate with bonding metal. The bonding metal not only bonds the GaN layer to the metallic plate but also covers the entire surface of the metallic plate to prevent corrosion of the metallic plate and optionally spontaneous nucleation of GaN on the metallic plate during the bulk GaN growth in supercritical ammonia. The bonding metal is compatible with the corrosive environment of ammonothermal growth.
摘要:
In one instance, the seed crystal of this invention provides a nitrogen-polar c-plane surface of a GaN layer supported by a metallic plate. The coefficient of thermal expansion of the metallic plate matches that of GaN layer. The GaN layer is bonded to the metallic plate with bonding metal. The bonding metal not only bonds the GaN layer to the metallic plate but also covers the entire surface of the metallic plate to prevent corrosion of the metallic plate and optionally spontaneous nucleation of GaN on the metallic plate during the bulk GaN growth in supercritical ammonia. The bonding metal is compatible with the corrosive environment of ammonothermal growth.
摘要:
Present invention discloses a high-pressure vessel of large size formed with a limited size of e.g. Ni—Cr based precipitation hardenable superalloy. Vessel may have multiple zones. For instance, the high-pressure vessel may be divided into at least three regions with flow-restricting devices and the crystallization region is set higher temperature than other regions. This structure helps to reliably seal both ends of the high-pressure vessel, at the same time, may help to greatly reduce unfavorable precipitation of group III nitride at the bottom of the vessel. Invention also discloses novel procedures to grow crystals with improved purity, transparency and structural quality. Alkali metal-containing mineralizers are charged with minimum exposure to oxygen and moisture until the high-pressure vessel is filled with ammonia. Several methods to reduce oxygen contamination during the process steps are presented. Back etching of seed crystals and a new temperature ramping scheme to improve structural quality are disclosed.
摘要:
Present invention discloses a high-pressure vessel of large size formed with a limited size of e.g. Ni—Cr based precipitation hardenable superalloy. Vessel may have multiple zones.For instance, the high-pressure vessel may be divided into at least three regions with flow-restricting devices and the crystallization region is set higher temperature than other regions. This structure helps to reliably seal both ends of the high-pressure vessel, at the same time, may help to greatly reduce unfavorable precipitation of group III nitride at the bottom of the vessel.Invention also discloses novel procedures to grow crystals with improved purity, transparency and structural quality. Alkali metal-containing mineralizers are charged with minimum exposure to oxygen and moisture until the high-pressure vessel is filled with ammonia. Several methods to reduce oxygen contamination during the process steps are presented. Back etching of seed crystals and a new temperature ramping scheme to improve structural quality are disclosed.
摘要:
Present invention discloses a high-pressure vessel of large size formed with a limited size of e.g. Ni—Cr based precipitation hardenable superalloy. Vessel may have multiple zones.For instance, the high-pressure vessel may be divided into at least three regions with flow-restricting devices and the crystallization region is set higher temperature than other regions. This structure helps to reliably seal both ends of the high-pressure vessel, at the same time, may help to greatly reduce unfavorable precipitation of group III nitride at the bottom of the vessel.Invention also discloses novel procedures to grow crystals with improved purity, transparency and structural quality. Alkali metal-containing mineralizers are charged with minimum exposure to oxygen and moisture until the high-pressure vessel is filled with ammonia. Several methods to reduce oxygen contamination during the process steps are presented. Back etching of seed crystals and a new temperature ramping scheme to improve structural quality are disclosed.
摘要:
The present invention discloses a new testing method of group III-nitride wafers. By utilizing the ammonothermal method, GaN or other Group III-nitride wafers can be obtained by slicing the bulk GaN ingots. Since these wafers originate from the same ingot, these wafers have similar properties/qualities. Therefore, properties of wafers sliced from an ingot can be estimated from measurement data obtained from selected number of wafers sliced from the same ingot or an ingot before slicing. These estimated properties can be used for product certificate of untested wafers. This scheme can reduce a significant amount of time, labor and cost related to quality control.