Abstract:
A liquid crystal display includes: a substrate; a thin film transistor; a pixel electrode; a roof layer; a liquid crystal layer; and a plurality of partitions. The thin film transistor is disposed on the substrate. The pixel electrode is connected to the thin film transistor. The roof layer is disposed to face the pixel electrode. The liquid crystal layer is formed by a plurality of microcavities between the pixel electrode and the roof layer, wherein the microcavities include a liquid crystal material. The partitions are between the microcavities adjacent to each other, wherein the partitions may include an organic material and are arranged side by side to one another.
Abstract:
A liquid crystal display includes: a substrate; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; and a roof layer facing the pixel electrode. A plurality of microcavities are between the pixel electrode and the roof layer. A liquid crystal material is in the microcavities, and a dent is formed in the roof layer.
Abstract:
A liquid crystal display includes: a substrate; a thin film transistor; a pixel electrode; an insulating layer; a plurality of microcavities; and a partition. The thin film transistor is disposed on the substrate. The pixel electrode is connected to the thin film transistor. The insulating layer is disposed to face the pixel electrode. The microcavities are between the pixel electrode and the insulating layer, wherein the microcavities include a liquid crystal material. The partition is between the microcavities, wherein the partition has a bar shape and is disposed on the insulating layer.
Abstract:
A liquid crystal display includes: a substrate; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; and a roof layer facing the pixel electrode. A plurality of microcavities are between the pixel electrode and the roof layer. A liquid crystal material is in the microcavities, and a dent is formed in the roof layer.
Abstract:
A display device may include a first subpixel electrode; a first roof layer; a first liquid crystal layer disposed between the first subpixel electrode and the first roof layer; and a first support member overlapping a first end portion of the first roof layer in a first direction. The display device may further include a second subpixel electrode immediately neighboring the first subpixel electrode; a second roof layer; a second liquid crystal layer disposed between the second subpixel electrode and the second roof layer; and a second support member overlapping a first end portion of the second roof layer in the first direction. The first end portion of the first roof layer and the first end portion of the second roof layer may be disposed between a second end portion of the first roof layer and a second end portion of the second roof layer.
Abstract:
A device for monitoring a liquid crystal display includes: a substrate including a display region and a non-display region disposed at an edge of the display region. The display region includes: a thin film transistor disposed on the substrate, a pixel electrode disposed on the substrate and connected to the thin film transistor, a first sacrificial layer disposed on the pixel electrode, and a roof layer disposed on the sacrificial layer. The non-display region includes: a second sacrificial layer disposed on the substrate, and the roof layer disposed on the second sacrificial layer. The first sacrificial layer has a first longitudinal dimension and a first cross-sectional area, and the second sacrificial layer has a second longitudinal dimension and a second cross-sectional area. The first cross-sectional area is the same as the second cross-sectional area. The second longitudinal dimension is greater than the first longitudinal dimension.
Abstract:
Provided are a display device and a manufacturing method thereof capable of preventing deformation of a microcavity and stably injecting an aligning agent and a liquid crystal. The display device includes a substrate including a plurality of pixel areas which includes a plurality of pixel columns and is disposed in a matrix form; a thin film transistor formed on the substrate; a pixel electrode connected to the thin film transistor and formed in the pixel area; a roof layer formed on the pixel electrode so as to be spaced apart from the pixel electrode with a microcavity therebetween; a first injection hole formed in the roof layer exposing the microcavity at a side edge of the pixel column; a liquid crystal layer filling the microcavity; and an encapsulation layer formed on the roof layer so as to cover the first injection hole to seal the microcavity.
Abstract:
A display device includes: a substrate, on which pixel areas arranged substantially in a matrix form having pixel rows and pixel columns are defined; a thin film transistor disposed on the substrate; a pixel electrode disposed in the pixel areas and connected to the thin film transistor; common electrodes disposed on the pixel electrode and spaced apart from the pixel electrode, where a microcavity is defined between the pixel electrode and the common electrodes; a roof layer disposed on the common electrodes, where a liquid crystal injection hole is defined through the common electrodes and the roof layer and exposes the microcavity; a liquid crystal layer disposed in the microcavity; and an encapsulation layer disposed on the roof layer, where the encapsulation layer covers the liquid crystal injection hole and seals the microcavity, where the common electrodes in the pixel rows are connected to each other.
Abstract:
A display panel with microcavities each having ends of asymmetric cross-sectional area. An exemplary display panel has a substrate; an electrode disposed on the substrate; and a supporting member disposed on the electrode. The supporting member is shaped to form a cavity between the supporting member and the electrode. The cavity has a first opening at one end of the supporting member and a second opening at an opposite end of the supporting member, the first opening being positioned over the electrode. A cross-sectional area of the first opening is smaller than a cross-sectional area of the second opening.
Abstract:
A display device according to an embodiment includes a display unit having a plurality of light emitting regions, a non-light emitting region positioned between the adjacent light emitting regions, and a color conversion unit overlapping the display unit and including a bank layer and a spacer, the bank layer has an opening corresponding to the light emitting region and a bank hole corresponding to the non-light emitting region, the bank hole overlapping the spacer on a plane, and at least a portion of an edge of the bank layer around the bank hole includes a low liquid repellent portion having a lower liquid repellency than a remaining surface of the bank layer.